SPIRULINA (ARTHROSPIRA PLATENSIS): AN ALTERNATIVE SOURCE OF NUTRIENTS - A REVIEW

Authors

  • Daniel Nascimento Motta
  • Milena Gaion Malosso
  • Edilson Pinto Barbosa
  • Eliana de Macedo Medeiros
  • Rosany Piccolotto Carvalho

DOI:

https://doi.org/10.56238/isevjhv4n5-005

Keywords:

Arthrospira platensis, Nutritional supplement, Health, Proteins, Cosmetics

Abstract

Spirulina (Arthrospira platensis) is a blue-green cyanobacterium that grows in fresh and salt water. It is known to be a rich source of nutrients, including proteins, vitamins, minerals, and antioxidants. One of its main applications is its use as nutritional supplement, where Spirulina is often consumed to its high protein content and other essential nutrients. It is especially popular among vegetarians and vegans due to its complete protein quality. Some studies suggest that Spirulina may have several health benefits, such as reducing cholesterol, controlling blood pressure, strengthening the immune system and protecting against cardiovascular diseases. It has also been reported to act as a detox agent, since Spirulina is known for its ability to detoxify the body, helping to remove heavy metals and toxins from the body. In the cosmetics field, due to its antioxidant and nourishing properties, Spirulina is used in several products, such as facial creams, hair masks, and body lotions to promote skin and hair health. It is also used in agriculture as an organic fertilizer and in animal feeding, especially in aquaculture, as a source of protein for fish and shrimp. In summary, Spirulina is a valuable source of nutrients and has a variety of applications, from nutritional supplements to cosmetics and agriculture. Its health benefits and potential for sustainable use make it a popular choice in many areas. Therefore, in this article we review the applications of Spirulina (Arthrospira platensis).

References

[1] Silva, L. G. (2019). Hunger market: A study on the global food system. Https://doi.org/10.1037/0033-2909.I26.1.78, 1–59.

[2] Schappo, S. (2020). Hunger and food insecurity in times of the COVID-19 pandemic. State Com. SUAS-SC COVID-19 in Def. da Vida, 1–11.

[3] Olanrewaju, O. S., Oyatomi, O. O., Babalola, O. O., & Abberton, M. (2022). Breeding potentials of Bambara groundnut for food and nutrition security in the face of climate change. Frontiers in Plant Science, 12, 1–14. https://doi.org/10.3389/fpls.2021.798993

[4] Suga, H. (2019). Household food unavailability due to financial constraints affects the nutrient intake of children. European Journal of Public Health, 29, 816–820. https://doi.org/10.1093/eurpub/cky263

[5] Sisha, T. A. (2020). Household level food insecurity assessment: Evidence from panel data, Ethiopia. Scientific African, 7, e00262. https://doi.org/10.1016/j.sciaf.2019.e00262

[6] Sumsion, R. M., June, H. M., & Cope, M. R. (2023). Measuring food insecurity: The problem with semantics. Foods, 12(9), 1816. https://doi.org/10.3390/foods12091816

[7] Iversen, T. O., Westengen, O. T., & Jerven, M. (2023). The history of hunger: Counting calories to make global food security readable. World Development Perspectives, 30, 100504. https://doi.org/10.1016/j.wdp.2023.100504

[8] Leal, E. M., & Medeiros, L. C. R. de. (2021). Arthrospira platensis, from empirical to scientific: Support to needy communities for nutrition and income in a sustainable way. 1–46.

[9] Fingola, Y. P. F. (2021). Nutrition, food and human health: Killing the hungry for knowledge. Universidade Federal Fluminense, 1–94.

[10] Tevie, J., & Shaya, F. (2018). Does food security predict poor mental health? Journal of Public Mental Health, 17, 3–10. https://doi.org/10.1108/JPMH-12-2016-0058

[11] Iorember, F. M. (2018). Malnutrition in chronic kidney disease. Frontiers in Pediatrics, 6, 161. https://doi.org/10.3389/fped.2018.00161

[12] Borras, A. M., & Mohamed, F. A. (2020). Health inequities and the shifting paradigms of food security, food insecurity, and food sovereignty. International Journal of Health Services, 50, 299–313. https://doi.org/10.1177/0020731420913184

[13] Rashid, N., Ashraf, I., Kumar, R., & Richa, R. (2021). Enrichment via chia seeds to tackle hidden hunger: A review. Journal of Food Processing and Preservation, 45, 1–14. https://doi.org/10.1111/jfpp.15593

[14] Fernandes, A. S., Lopes, E. J., & Zepka, L. Q. An overview on microalgae carotenoids and chlorophylls: Focus in the bioaccessibility. Https://doi.org/10.34117/bjdv7n8-470.

[15] Alba, C. F., Suguimoto, H. H., & Morioka, L. R. I. (2021). Technological prospecting of patents on microalgae bioactive compounds. Brazilian Journal of Development, 7, 81223–81236. https://doi.org/10.34117/bjdv7n8-371

[16] Sharma, P., Gujjala, L. K. S., Varjani, S., & Kumar, S. (2022). Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. Science of the Total Environment, 813, 152417. https://doi.org/10.1016/j.scitotenv.2021.152417

[17] Mahendran, M. S., Dhanapal, A., Wong, L. S., & Kasivelu, G. (2021). Microalgae as a potential source of bioactive food compounds. Current Research in Nutrition and Food Science, 9, 917–927. https://doi.org/10.12944/CRNFSJ.9.3.18

[18] Greque, M., Morais, D., Gabrielle, A., Alvarenga, P., & Vaz, S. (2021). Nanoencapsulation of Spirulina biomass by electrospraying for development of functional foods – A review. Biotechnology Research and Innovation, 5(6).

[19] Papadimitriou, T., Kormas, K., & Vardaka, E. (2021). Cyanotoxin contamination in commercial Spirulina food supplements. Journal für Verbraucherschutz und Lebensmittelsicherheit, 16, 227–235. https://doi.org/10.1007/s00003-021-01324-2

[20] Almeida, L. M. R., Cruz, L. F. da S., Machado, B. A. S., Nunes, I. L., Costa, J. A. V., Ferreira, E. de S., Lemos, P. V. F., Druzian, J. I., & Souza, C. O. de. (2021). Effect of the addition of Spirulina sp. biomass on the development and characterization of functional food. Algal Research, 58, 102387. https://doi.org/10.1016/j.algal.2021.102387

[21] Hallowell, N., Badger, S., & Lawton, J. (2021). Eating to live or living to eat: The meaning of hunger following gastric surgery. SSM - Qualitative Health Research, 1, 100005. https://doi.org/10.1016/j.ssmqr.2021.100005

[22] Gengatharan, A. (2023). Alternative protein sources as functional food ingredients. Future Protein Sources, Processing Applications Bioeconomy, 359–390. https://doi.org/10.1016/B978-0-323-91739-1.00017-9

[23] Bahar, N. H. A., Lo, M., Sanjaya, M., Vianen, J. van, Alexander, P., Ickowitz, A., & Sunderland, T. (2020). Meeting the food security challenge for nine billion people in 2050: What impact on forests? Global Environmental Change. https://doi.org/10.1016/j.gloenvcha.2020.102056

[24] Silva, Â. M., & Oliveira, J. V. de. (2019). Hunger in the semi-arid narrative of droughts and the right to development. Redes, 24, 143–161. https://doi.org/10.17058/redes.v24i2.13002

[25] Sharma, S., Shandilya, R., Kim, K., Mandal, D., Tim, U. S., & Wong, J. (2022). eFeed-Hungers 2.0: Pervasive computing, sustainable feeding to purge global hunger. Sustainable Computing: Informatics and Systems, 35, 100694. https://doi.org/10.1016/j.suscom.2022.100694

[26] Ribeiro Junior, J. R. S. (2021). Hunger as a process and capitalist social reproduction. Boletim Paulista de Geografia, 1, 15–39. https://publicacoes.agb.org.br/index.php/boletim-paulista/article/view/1992

[27] Sharma, S., Shandilya, R., Tim, U. S., & Wong, J. (2018). eFeed-Hungers.com: Mitigating global hunger crisis using next generation technologies. Telematics and Informatics, 35, 446–456. https://doi.org/10.1016/j.tele.2018.01.003

[28] Luan, Y., Fischer, G., Wada, Y., Sun, L., & Shi, P. (2018). Quantifying the impact of diet quality on hunger and undernutrition. Journal of Cleaner Production, 205, 432–446. https://doi.org/10.1016/j.jclepro.2018.09.064

[29] Amolegbe, K. B., Upton, J., Bageant, E., & Blom, S. (2021). Food price volatility and household food security: Evidence from Nigeria. Food Policy, 102, 102061. https://doi.org/10.1016/j.foodpol.2021.102061

[30] Pinheiro, I. B., & Silva, J. H. F. (2019). Global food crisis and the question of food security. Revista Eletrônica Estácio Recife, 5, 1–15.

[31] Gohara-Beirigo, A. K., Matsudo, M. C., Cezare-Gomes, E. A., Carvalho, J. C. M. de, & Danesi, E. D. G. (2022). Microalgae trends toward functional staple food incorporation: Sustainable alternative for human health improvement. Trends in Food Science & Technology, 125, 185–199. https://doi.org/10.1016/j.tifs.2022.04.030

[32] Soares, L. S. (2021). Theoretical review: Cultivation of microalgae for the production of carotenoids. Trabalho de Conclusão de Curso (Undergraduate - Bioprocess and Biotechnology Eng.), Universidade Estadual Paulista “Júlio Mesquita Filho”, Faculty of Farm Sciences, 1–44.

[33] Dourado, M. S., Cardoso, C. C. A., Calado, C. S. C., Frety, R. T. F., & Sales, E. A. (2020). Microalgae as raw material for the production of lipid compounds precursors to green fuels. Brazilian Journal of Development, 6, 13985–13994. https://doi.org/10.34117/bjdv6n3-316

[34] Sousa, V. E. (2020). Evaluation of ohmic heating processing on extraction of bioactive compounds from microalgae biomass.

[35] Severo, I. A., & Fagundes, M. B. (2021). Microalgae: Potential applications and challenges. Canoas.

[36] Elisabeth, B., Rayen, F., & Behnam, T. (2021). Microalgae culture quality indicators: A review. Critical Reviews in Biotechnology, 41, 457–473. https://doi.org/10.1080/07388551.2020.1854672

[37] de Freitas Coêlho, D., Tundisi, L. L., Cerqueira, K. S., da Silva Rodrigues, J. R., Mazzola, P. G., Tambourgi, E. B., & de Souza, R. R. (2019). Microalgae: Cultivation aspects and bioactive compounds. Brazilian Archives of Biology and Technology, 62. https://doi.org/10.1590/1678-4324-2019180343

[38] Jung, F., Krüger-Genge, A., Waldeck, P., & Küpper, J. H. (2019). Spirulina platensis, a super food? Journal of Cellular Biotechnology, 5, 43–54. https://doi.org/10.3233/JCB-189012

[39] Ramírez-Rodríguez, M. M., Estrada-Beristain, C., Metri-Ojeda, J., Pérez-Alva, A., & Baigts-Allende, D. K. (2021). Spirulina platensis protein as sustainable ingredient for nutritional food products development. Sustainability, 13(12), 6849. https://doi.org/10.3390/su13126849

[40] Kaewdam, S., Jaturonglumlert, S., Varith, J., & Nitatwichit, C. (2019). Kinetic models for phycocyanin production by fed-batch cultivation of the Spirulina platensis. International Journal of GEOMATE, 17, 187–194. https://doi.org/10.21660/2019.61.89205

[41] Saharan, V., & Jood, S. (2021). Effect of storage on Spirulina platensis powder supplemented breads. Journal of Food Science and Technology, 58, 978–984. https://doi.org/10.1007/s13197-020-04612-1

[42] Demarco, M. (2020). Production and characterization of Spirulina powders by different drying methods. Dissertação, Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Programa de Pós-Graduação em Ciência de Alimentos, 1–80.

[43] Meireles, H. D. R. (2018). Optimization of phycocyanin extraction from Spirulina platensis. Trabalho de Conclusão de Curso, Universidade Federal de Sergipe, Campus Universitário Prof. Antônio Garcia Filho, Departamento de Farmácia, Lagarto, 60.

[44] Niangoran, N. U. F., Buso, D., Zissis, G., & Prudhomme, T. (2021). Influence of light intensity and photoperiod on energy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis). OCL - Oilseeds Fats, Crops and Lipids, 28. https://doi.org/10.1051/ocl/2021025

[45] Paulino, V., Pinto, A., Baptista, M. do C., & Branco, S. J. (2019). Minutes 3. The International Conference: The Production of Scientific Knowledge in Timor-Leste. https://www.researchgate.net/publication/340493261

[46] Alfadhly, N. K. Z., Alhelfi, N., Altemimi, A. B., Verma, D. K., & Cacciola, F. (2022). Tendencies affecting the growth and cultivation of genus Spirulina: An investigative review on current trends. Plants, 11(22), 3063. https://doi.org/10.3390/plants11223063

[47] Jin, S.-E., Lee, S. J., & Park, C.-Y. (2020). Mass-production and biomarker-based characterization of high-value Spirulina powder for nutritional supplements. Food Chemistry, 325, 126751. https://doi.org/10.1016/j.foodchem.2020.126751

[48] Doan, Y. T. T., Ho, M. T., Nguyen, H. K., & Han, H. D. (2021). Optimization of Spirulina sp. cultivation using reinforcement learning with state prediction based on LSTM neural network. Journal of Applied Phycology, 33, 2733–2744. https://doi.org/10.1007/s10811-021-02488-y

[49] de Pina, L. C. C., de Lira, E. B., da Costa, M. H. J., Pereira, D. A., Varandas, R. C. R., de Almeida, P. de M., Nonato, N. da S., & Costa-Sassi, C. F. (2021). Evaluation of a microalgae cultivation system with a mix of photobioreactors tubular and parallel plates, for the production of microalgae biomass in alternative culture media. Brazilian Journal of Development, 7, 37734–37777. https://doi.org/10.34117/bjdv7n4-304

[50] Oliveira, R. D. (2022). Microalgae photobioreactors as a passive air conditioning system in Brazilian buildings.

[51] Xiaogang, H., Jalalah, M., Jingyuan, W., Zheng, Y., Li, X., & Salama, E. S. (2022). Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Conversion and Biorefinery, 12, 1939–1958. https://doi.org/10.1007/s13399-020-01061-w

[52] Mingotti, R. Increased protein content of dry biomass of cyanobacteria Spirulina platensis by extraction.

[53] Damessa, F. (2021). Nutritional and functional values of microalgae (Spirulina) naturally found in East Africa. Nelson Mandela African Institution of Science and Technology, 1–101. https://dspace.nm-aist.ac.tz/handle/20.500.12479/1296

[54] Rodríguez-Roque, M. J., Sánchez-Vega, R., Aguiló-Aguayo, I., Medina-Antillón, A. E., Soto-Caballero, M. C., Salas-Salazar, N. A., & Valdivia-Nájar, C. G. (2021). Bioaccessibility and bioavailability of bioactive compounds delivered from microalgae. Cultivation of Microalgae in Food Industry, 325–342. https://doi.org/10.1016/B978-0-12-821080-2.00006-X

[55] El-Feky, A., El-Sayed, A. E.-K. B., Mounier, M., & Reda, M. (2022). C-Phycocyanin, anticancer activity and nutritional value of mass-produced Spirulina platensis. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/EJCHEM.2022.120717.5415

[56] Silva, L. L. (2018). Effects of Spirulina in combating iron deficiency anemia. Centro Universitário de Brasília - UniCEUB, Faculty of Education Sciences and Health, Nutrition Course, 1–12.

[57] Thevarajah, B., Kankanalage, G., Hasara, S., Premaratne, M., Nimashana, P. H. V., Nagarajan, D., Chang, J., & Ariyadassa, T. U. (2022). Large-scale production of Spirulina-based proteins and C-phycocyanin: A biorefinery approach. 185.

[58] Julianti, E., Susanti, Singgih, M., & Neti Mulyani, L. (2019). Optimization of extraction method and characterization of phycocyanin pigment from Spirulina platensis. Journal of Mathematical and Fundamental Sciences, 51(2), 168–176. https://doi.org/10.5614/j.math.fund.sci.2019.51.2.6

[59] Munawaroh, H. S. H., Gumilar, G. G., Alifia, C. R., Marthania, M., Stellasary, B., Yuliani, G., Wulandari, A. P., Kurniawan, I., Hidayat, R., Ningrum, A., Koyande, A. K., & Show, P. L. (2020). Photostabilization of phycocyanin from Spirulina platensis modified by formaldehyde. Process Biochemistry, 94, 297–304. https://doi.org/10.1016/j.procbio.2020.04.021

[60] Prabakaran, G., Sampathkumar, P., Kavisri, M., & Moovendhan, M. (2020). Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. International Journal of Biological Macromolecules, 153, 256–263. https://doi.org/10.1016/j.ijbiomac.2020.03.009

[61] Minatel, G. G. (2021). Characterization of Spirulina biomasses for use as an ingredient. Trabalho de Conclusão de Curso, Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Graduação em Ciência e Tecnologia de Alimentos, Florianópolis.

[62] Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37, 422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010

[63] Borba, L. S., & Ferreira Camargo, V. A. (2018). Biotechnology and applications. Centro de Pós-Graduação, Pesquisa e Extensão Oswaldo Cruz, 1–23.

[64] Roman, G. M. (2016). Evaluation of the incorporation of microalgae Chlorella sp. in pasta. Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Curso de Engenharia de Alimentos, Monografia, 56.

[65] de Oliveira, D. T., da Costa, A. A. F., Costa, F. F., da Rocha Filho, G. N., & do Nascimento, L. A. S. (2020). Advances in the biotechnological potential of Brazilian marine microalgae and cyanobacteria. Molecules, 25(12), 2908. https://doi.org/10.3390/molecules25122908

[66] Pereira, A. M., Alberto, J., Costa, V., & Santos, T. D. (2020). Encapsulation of Spirulina protein hydrolyzes for food application.

[67] Pal, I., & Bose, C. (2022). Spirulina - A marine miracle for sustainable food system. Marine Biology Research, 0, 1–17. https://doi.org/10.1080/17451000.2022.2101122

[68] Suyama, I. M., Barison, L., dos Santos, S. S., Paraíso, C. M., Stafussa, A. P., & Madrona, G. S. (2020). Application of the microalgae Spirulina spp. in freeze-dried yogurt. Scientia Plena, 16, 1–8. https://doi.org/10.14808/sci.plena.2020.021502

[69] Evangelista-Barreto, N., de Lima, K. Y. G., da Bispo, A. S., & Ferreira, M. A. (2021). Enrichment of yogurts with microalgae and tropical fruits: A narrative review. 341–354. https://doi.org/10.37885/210604907

[70] Almeida, L. M. R., Falcão, J. S., Tavares, P. P. L. G., Silva Cruz, L. F., Nunes, I. L., Costa, J. A. V., Druzian, J. I., & Souza, C. O. (2020). Use of Spirulina platensis biomass for developing sauce with high protein content: A pilot study. Brazilian Journal of Development, 6, 21172–21185. https://doi.org/10.34117/bjdv6n4-332

[71] Alfadhly, N. K. Z., Alhelfi, N., Altemimi, A. B., Verma, D. K., Cacciola, F., & Narayananakutty, A. (2022). Trends and technological advancements in the possible food applications of Spirulina and their health benefits: A review. Molecules, 27(17), 5584. https://doi.org/10.3390/molecules27175584

[72] da Costa, G. S., da Silva, M. C., & da Cruz, A. G. (2021). Cream requeijão: Processing and innovations. Food, Science, Technology and Environment, 2, 23–42.

[73] Agustini, T. W., Dewi, E. N., Amalia, U., & Kurniasih, R. A. (2019). Application of basil leaf extracts to decrease Spirulina platensis off-odour in increasing food consumption. International Food Research Journal, 26, 1789–1794.

[74] do Bú, S. A., Felinto, A. C. B., Marçal, E. J. A., de Oliveira, I. M., Lima, J. A., de Sousa, J. B., de Melo, W. G., & da Cavalcanti, M. da S. (2021). Production and physicochemical characterization of mint jelly enriched with Spirulina (Spirulina platensis). Research, Society and Development, 10(4), e30110414145. https://doi.org/10.33448/rsd-v10i4.14145

[75] Zhuang, D., He, N., Khoo, K. S., Ng, E. P., Chew, K. W., & Ling, T. C. (2022). Application progress of bioactive compounds in microalgae on pharmaceuticals and cosmetics. Chemosphere, 291, 132932. https://doi.org/10.1016/j.chemosphere.2021.132932

[76] Silva, S. C., Ferreira, I. C. F. R., Dias, M. M., & Barreiro, M. F. (2020). Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules, 25(15), 3406. https://doi.org/10.3390/molecules25153406

[77] Ma, Z., Ahmed, F., Yuan, B., & Zhang, W. (2019). Fresh living Arthrospira as dietary supplements: Current status and challenges. Trends in Food Science & Technology, 88, 439–444. https://doi.org/10.1016/j.tifs.2019.04.010

[78] Ambati, R. R., Gogisetty, D., Aswathanarayana, R. G., Ravi, S., Bikkina, P. N., Bo, L., & Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59, 1880–1902. https://doi.org/10.1080/10408398.2018.1432561

[79] Ashaolu, T. J., Samborska, K., Lee, C. C., Tomas, E., Capanoglu, Ö., Tarhan, B., Taze, S. M., & Jafari, S. M. (2021). Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. International Journal of Biological Macromolecules, 193, 2320–2331. https://doi.org/10.1016/j.ijbiomac.2021.11.064

[80] Sandyabayeva, S. K., Kossalbayev, B. D., Zayadan, B. K., Sadvakasova, A. K., Bolatkhan, K., Zadneprovskaya, E. V., Kakimov, A. B., Alwasel, S., Leong, Y. K., Allakhverdiev, S. I., & Chang, J. S. (2022). Prospects of cyanobacterial pigment production: Biotechnological potential and optimization strategies. Biochemical Engineering Journal, 187, 108640. https://doi.org/10.1016/j.bej.2022.108640

[81] Chen, Y., Liang, H., Du, H., Jesumani, V., He, W., Cheong, K. L., Li, T., & Hong, T. (2022). Industry chain and challenges of microalgal food industry - A review. Critical Reviews in Food Science and Nutrition, 0, 1–28. https://doi.org/10.1080/10408398.2022.2145455

[82] Melikhov, V. V., Medvedeva, L. N., & Frolova, M. V. (2020). Environmental imperative in the development of the national economy: Increasing the potential of microalgae. South Russian Ecology Development, 15, 117–131. https://doi.org/10.18470/1992-1098-2020-3-117-131

[83] Chen, C., Tang, T., Shi, Q., Zhou, Z., & Fan, J. (2022). The potential and challenges of microalgae as promising future food sources. Trends in Food Science & Technology, 126, 99–112. https://doi.org/10.1016/j.tifs.2022.06.016

[84] Moons, I., Barbarossa, C., & De Pelsmacker, P. (2018). The determinants of the adoption intention of eco-friendly functional food in different market segments. Ecological Economics, 151, 151–161. https://doi.org/10.1016/j.ecolecon.2018.05.012

[85] Barreto, A. R., & Linton, M. A. O. (2020). Nutraceutical characteristics, cultivation tools and genotoxic study of Spirulina. Agrobiología, Mérida Publishers, Santa Maria - RS, 78–92. https://doi.org/10.4322/mp.2020.001.05

Downloads

Published

2025-10-28

How to Cite

SPIRULINA (ARTHROSPIRA PLATENSIS): AN ALTERNATIVE SOURCE OF NUTRIENTS - A REVIEW. (2025). International Seven Journal of Health Research, 4(5), e8339 . https://doi.org/10.56238/isevjhv4n5-005