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ABSTRACT 
We apply a new tool that is the Maxwell-Fredholm equations, to study the collision of an 
electromagnetic pulse with a flat surface of separation between the two parts of a torus-
shaped artefact with a highly anisotropic refractive index that forces it to move over its 
surface. We find that it is possible to establish a relationship between the different angles 
involved depending on the parameters of the toroidal coordinates, which we call a 
particularization of Snell's law. 
 
Keywords: Maxwell-Fredholm Equations. Left-Handed Media. Toroidal Symmetry. 
Electromagnetic Resonances. 
 
RESUMO  
Aplicamos uma nova ferramenta, as equações de Maxwell-Fredholm, para estudar a 
colisão de um pulso eletromagnético com uma superfície plana de separação entre as 
duas partes de um artefato em forma de toro, com um índice de refração altamente 
anisotrópico que o força a se mover sobre sua superfície. Constatamos que é possível 
estabelecer uma relação entre os diferentes ângulos envolvidos, dependendo dos 
parâmetros das coordenadas toroidais, o que chamamos de uma particularização da lei 
de Snell. 
 
Palavras-chave: Equações de Maxwell-Fredholm. Meios Canhotos. Simetria Toroidal. 
Ressonâncias Eletromagnéticas. 
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RESUMEN 
Aplicamos una nueva herramienta, las ecuaciones de Maxwell-Fredholm, para estudiar 
la colisión de un pulso electromagnético con una superficie plana de separación entre 
las dos partes de un artefacto con forma de toro, con un índice de refracción altamente 
anisotrópico que lo obliga a moverse sobre su superficie. Encontramos que es posible 
establecer una relación entre los diferentes ángulos involucrados según los parámetros 
de las coordenadas toroidales, lo que llamamos una particularización de la ley de Snell. 
 
Palabras clave: Ecuaciones de Maxwell-Fredholm. Medios Zurdos. Simetría Toroidal. 
Resonancias Electromagnéticas. 
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1 INTRODUCTION  

On this work we return to the use of the Maxwell-Fredholm equations to describe 

a highly anisotropic media which is capable to force an electromagnetic pulse to travel 

over the surface of a toroid surface. But now, we suppose that suddenly, the soft 

continuous change in the refraction index becomes completely different from a plane that 

cuts the torus transversally. We then have that one half of the torus is different to the 

other part. As the name of the paper suggests, we analyse the effect of the change in the 

pulse trajectory due to their passage from one section to the other of the torus which 

leads to a geometry-dependent Snell law. In order to make clear the tools we are using, 

we do a review of the toroidal coordinates and a justification for the use of the Maxwell-

Fredholm equations because the latter are based on the homogeneous Fredholm 

equations. Then we divide the problem of the scattering in two parts, first we suppose 

that the pulse approaches the interface between the two different donut sectors and then 

we suppose that the scattered pulse leaves the interface. It is obvious that the  

problem treated with conventional tools is an inhomogeneous problem but is for 

this reason that we expose the feasibility of using our approach. Toroidal coordinates 

have a wide application, particularly in the search for new energy sources and tokamaks 

[see references (2) and (3)], but also in flux coordinates, so the choice of a toroidal 

geometry is in itself interesting. The Maxwell-Fredholm equations are written as 

                                                                                                                           

      (1) 

                                                                      

         (2) 

 

                                        (3) 

 

2 THE UNITARY VECTORS   ,   AND   

In this section we will find the expressions of the unit vectors in toroidal coordinates 

since they will be fundamental for our work since thanks to them we will be able to easily 

impose the conditions that the electromagnetic fields must satisfy.  So, the unitary 

mutually perpendicular basis that are represented in Fig. 1 is:  
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3 BEAM DEFLECTION IN TOROIDAL SYMMETRY 

In order to pose the shock of the electromagnetic pulse traveling on the surface of 

a toroid against a flat surface, we will use a new approach, the use of the Maxwell-

Fredholm equations. 

Let us take equation (2) and make in the left-hand term 

                                                                                                                

     (7) 

 

So we arrive to the equation 

 

 (8) 

 

Now, we suppose that the electric field points toward the unitary vector  that 

implies the equation (8) becomes 
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Defining the permittivity tensor 

 

  (10) 

 

In principle, there is a dependence on the frequency but, for convenience, we 

bequeath this to the kernel, in order to easy look the contribution of the tensor , which 

operates on the column vectors in the   space bending the beam trajectory, then 

by using a similar description as the used for the Euler angles: 

 

 (11) 

 

The total effect is to make that from an initial point ( )  

, , , the  parameter tour to 

the new value     + −


cos cos 2 cos sin 2 sin , tour to the new value 

    + +


sin cos sin sin 2 cos    and    preserves his value that is the same toroidal surface 

as long as:  
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We have used the notation for distinguish between the two successive rotations 

over the   ( , , )  space. 

In terms of this last tensor, equation (9) can be written  

                                                                                                          

   (13) 

For simplicity, we propose that we have only two punctual emitters with the kernel 

given by                   
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On matrix (14) the elements are 

                                                                                                           

      (15) 

As we have said, we suppose that the electric field at the two initial points only 

have a component and indeed are identical, for example 

                                                                                                          

     (16) 

In equation (7) we impose the condition that the  does not have   or  

 components. Also, for the magnetic field we suppose that  

                                                                                                                                               

  (17) 

 

And 

                                                                                                                                                 

   (18) 

 

Which means that   satisfy the partial differential equation: 

 (19) 

 (20) 

 

But then we can write that  

                                                                                                              

    (21)                                   

                                                  

And from this equation we have that the magnetic field has the form  
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
=  

− 
0

1
H' C ( , )
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                  (22)    

 

Now from equations (13-16) we can write: 
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Remembering that  
1
r we are supposing that is very near to 

2
r  , so we can write 

that (although it is not strictly necessary): 
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And writing explicitly the kernel: 
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We can then write for the electric field by using equations (22-27) together with the 

explicit form of the curl in toroidal coordinates that is: 
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From these expressions we can write for the electric field 
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And because is a function of   then:                                                           
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And substituting on equation (29) we have also: 
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Finally we obtain the condition: 
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From equation (22) we can see that for every set    ( , , ) we have a different value 

of 
0

C and we need since equations (26-32) to establish the value of the electric field. We 

must remember that even the beam is moving over a torus of fixed  , intersects a 

continuum of different spheres. The process is illustrated in Figure 1 where the curl 

trajectory is represented in yellow and the basis vectors are rotated in the space   ( , , )  

in accordance with the permittivity tensor ε . 

Then, we have that equation (32) is modified when we cross the plane  to the new 

equation 
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Now, the unitary vector   
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                                                                                              (34) 

 

Changes slightly only on the  parameter, that is: 
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So, the angle between e
  the unitary basis vector e

  for the incident component 

and the unitary basis vector for the scattered beam is             
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  We have also that the unitary vector 
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Changes to a new form 
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z[cos( )cosh 1]e + +  −


                        (38) 

Again, the angle between the incident e
  and the scattered e

 unitary basis vectors 

is now 
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         The angles   and    are not the angles between incident and refracted 

pulse respect the toroidal coordinates   and  but they are related to them, that is, while 

equation equations (32) and (33) are valid for after and before the plane   , their left 
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Now we remember that equation (32) is 
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So, from equations (40) and (33) we see that the discontinuity in the derivative is 

then 
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   But for equation (33) 
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So that from (41) and (29) we obtain the slope: 
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Or 

0 0
0

C C
[( ) ( ) ] / E' ( '' ')(sinh )D
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 
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 
                         (43) 

From equation (43) we get that the angle of deflection is then 

 

0
arctan[( '' ')(sinh )D ]=  −                              (44) 

Assuming that the electric field only have a    component, the total angle between 

the incident and refracted field will be 
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arccose e arctan[( '' ')(sinh )D ]  + =  +  −                (45) 

 

The last equation requires an explanation, as the unit vectors change at every 

moment, we cannot suggest that this change  ( ) has to do with the refractive index when 

it changes abruptly, but we must use the new unit vectors as a reference to measure the 

angle of deflection. This is where we measuretion  . 

 

Figure 1 

Scattering of a pulse by a plane on a torus 

 

 

4 CONCLUSIONS   

We have achieved the proposed goals of describing the deflection angle of an 

electromagnetic pulse traveling over a toroidal surface and suddenly reaching a region 

with an abrupt change in the permittivity tensor separating the donut into two parts. 
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