

PROTEINS AND SATIETY STRATEGIES

di) https://doi.org/10.56238/isevmjv2n1-8291

Receipt of originals: 02/15/2021 Acceptance for publication: 03/15/2021

Andressa dos Reis Gonçalves Mariani

ABSTRACT

Protein plays a central role in regulating satiety and is considered one of the most effective macronutrients for appetite control and weight management. Its effects are mediated through multiple physiological mechanisms, including stimulation of anorexigenic hormones, delayed gastric emptying, and increased thermogenesis. These processes contribute to enhanced fullness, reduced subsequent energy intake, and improved dietary adherence. The quality and source of protein, whether animal or plant-based, influence satiety outcomes, while the timing and distribution of protein across meals, particularly breakfast, further optimize appetite regulation. Despite its benefits, high-protein diets must be carefully balanced to prevent excessive intake of saturated fat and to ensure long-term safety, especially in populations with specific health conditions. Understanding protein's unique role in satiety provides valuable insights for the development of nutritional strategies aimed at weight management, obesity prevention, and overall health improvement.

Keywords: Protein. Satiety. Appetite regulation. Weight management. Nutrition strategies. Hormonal response. Gastric emptying. Thermogenesis.

1 INTRODUCTION

The role of dietary protein in regulating satiety has been widely explored within nutritional science, as it represents one of the most effective macronutrients for appetite control and weight management. Satiety, the state of feeling full and satisfied after eating, is influenced by multiple factors, including hormonal responses, gastric emptying, and nutrient-specific mechanisms. Among the macronutrients, protein has consistently demonstrated a superior capacity to promote satiety when compared with carbohydrates and fats, making it a central focus of dietary strategies designed to regulate appetite and prevent overeating.

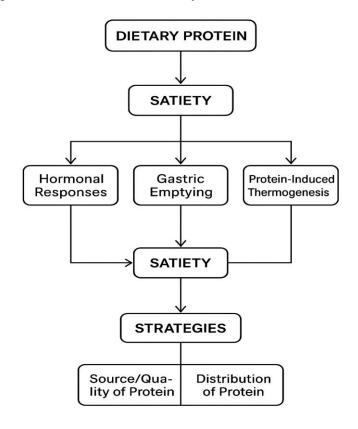
One of the primary mechanisms through which protein enhances satiety is its effect on gastrointestinal hormones involved in appetite regulation. Protein intake stimulates the secretion of anorexigenic hormones such as peptide YY (PYY), glucagon-like peptide 1 (GLP-1), and cholecystokinin (CCK), which contribute to the sensation of fullness. At the same time, protein suppresses ghrelin, a key orexigenic hormone that increases hunger before meals. Research indicates that higher protein diets lead to greater postprandial satiety and reduced subsequent energy intake, partly due to these hormonal modulations (Leidy et al., 2015).

Another important mechanism involves the slower digestion and prolonged gastric emptying associated with protein-rich foods. Protein takes longer to be metabolized compared with simple carbohydrates, which results in more sustained energy release and delayed return of hunger. This property is particularly valuable in structured dietary interventions, where maintaining adherence to caloric restriction can be challenging. In this context, protein provides not only a metabolic advantage but also a psychological one, as individuals experience less hunger while following a high-protein diet (Westerterp-Plantenga et al., 2009).

Protein-induced thermogenesis also contributes to satiety. The digestion, absorption, and metabolism of protein require greater energy expenditure compared to fat or carbohydrate, leading to higher diet-induced thermogenesis. This increase in energy expenditure, although modest, may reinforce satiety signals and contribute to long-term weight management. Studies suggest that protein can increase thermogenesis by approximately 20–30% of its energy content, compared with only 5–10% for carbohydrates and 0–3% for fats (Paddon-Jones et al., 2008).

In addition to metabolic and hormonal pathways, the source and quality of protein may also play a role in satiety outcomes. Animal proteins, such as those derived from dairy, meat, and eggs, are typically considered more satiating due to their high content of essential amino acids, particularly leucine, which is associated with muscle protein synthesis and regulation of energy balance. Plant-based proteins, while often lower in certain essential amino acids, have also been shown to promote satiety, particularly when consumed in adequate amounts and combined with fiber. For example, legumes and soybased proteins provide both sustained energy release and gastrointestinal benefits that support appetite control (Akhavan & Anderson, 2007).

Strategic implementation of protein for satiety has been applied in dietary interventions targeting obesity and metabolic disorders. Increasing protein intake to approximately 20–30% of total daily energy has been shown to reduce energy consumption and support weight loss while preserving lean body mass. Moreover, distributing protein evenly across meals, rather than concentrating intake at dinner, may enhance satiety throughout the day and improve overall diet adherence. Breakfast, in particular, has been identified as a critical moment to incorporate higher protein content, as it reduces hunger and snacking later in the day (Leidy et al., 2013).


Nevertheless, it is important to recognize the potential limitations and risks of highprotein diets. Excessive protein intake may pose challenges for individuals with renal
impairment or increase the intake of saturated fat when relying heavily on animal-based
protein sources. Therefore, strategies to use protein for satiety must be balanced with
overall diet quality, ensuring adequate intake of fiber, micronutrients, and healthy fats.
Plant-based proteins and lean animal proteins offer opportunities to achieve these goals
while minimizing health risks (Antonio et al., 2016).

The flowchart illustrates how dietary protein contributes to satiety through multiple interconnected mechanisms. After protein consumption, satiety is influenced by hormonal responses such as increased secretion of peptide YY, GLP-1, and CCK, alongside reduced ghrelin levels. Additionally, protein slows gastric emptying, prolonging the feeling of fullness, and enhances thermogenesis, which further supports appetite regulation. These combined effects strengthen overall satiety, which can then be strategically optimized by focusing on the source and quality of protein, as well as its distribution across meals to maximize appetite control and dietary adherence.

Figure 1

Mechanisms and Strategies of Protein-Induced Satiety

Source: Created by author.

In summary, proteins play a pivotal role in the regulation of satiety through hormonal, metabolic, and gastrointestinal mechanisms. Their unique ability to promote fullness, reduce subsequent energy intake, and enhance diet adherence makes them an essential component of strategies aimed at appetite control and weight management. However, the benefits of protein must be contextualized within the framework of balanced nutrition, where both source and quantity matter. Future research is expected to refine the understanding of protein's role in satiety, particularly in relation to personalized nutrition and long-term health outcomes.

REFERENCES

- Akhavan, T., & Anderson, G. H. (2007). Effects of protein source and quantity on appetite, energy expenditure, and body composition. Nutrition & Metabolism, 4(1), Article 1. https://doi.org/10.1186/1743-7075-4-1
- Antonio, J., Ellerbroek, A., Silver, T., & Vargas, L. (2016). A high protein diet has no harmful effects: A one-year crossover study in resistance-trained males. Journal of Nutrition and Metabolism, 2016, Article 9104792. https://doi.org/10.1155/2016/9104792
- Antonio, S. L. (2025). Technological innovations and geomechanical challenges in Midland Basin drilling. Brazilian Journal of Development, 11(3), Article e78097. https://doi.org/10.34117/bjdv11n3-005
- Filho, W. L. R. (2025a). The role of AI in enhancing identity and access management systems. International Seven Journal of Multidisciplinary, 1(2), Article e011. https://doi.org/10.56238/isevmjv1n2-011
- Filho, W. L. R. (2025b). The role of zero trust architecture in modern cybersecurity: Integration with IAM and emerging technologies. Brazilian Journal of Development, 11(1), Article e76836. https://doi.org/10.34117/bjdv11n1-060
- Freitas, G. B., Rabelo, E. M., & Pessoa, E. G. (2023). Projeto modular com reaproveitamento de contêiner marítimo. Brazilian Journal of Development, 9(10), 28303–28339. https://doi.org/10.34117/bjdv9n10-057
- Leidy, H. J., Clifton, P. M., Astrup, A., Wycherley, T. P., Westerterp-Plantenga, M. S., Luscombe-Marsh, N. D., ... Mattes, R. D. (2015). The role of protein in weight loss and maintenance. The American Journal of Clinical Nutrition, 101(6), 1320S–1329S. https://doi.org/10.3945/ajcn.114.084038
- Leidy, H. J., Ortinau, L. C., Douglas, S. M., & Hoertel, H. A. (2013). Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, "breakfast-skipping," late-adolescent girls. The American Journal of Clinical Nutrition, 97(4), 677–688. https://doi.org/10.3945/ajcn.112.053116
- Oliveira, C. E. C. de. (2025). Gentrification, urban revitalization, and social equity: Challenges and solutions. Brazilian Journal of Development, 11(2), Article e77293. https://doi.org/10.34117/bjdv11n2-010
- Paddon-Jones, D., Westman, E., Mattes, R. D., Wolfe, R. R., Astrup, A., & Westerterp-Plantenga, M. (2008). Protein, weight management, and satiety. The American Journal of Clinical Nutrition, 87(5), 1558S–1561S. https://doi.org/10.1093/ajcn/87.5.1558S
- Pessoa, E. G. (2024). Pavimentos permeáveis: Uma solução sustentável. Revista Sistemática, 14(3), 594–599. https://doi.org/10.56238/rcsv14n3-012
- Pessoa, E. G. (2025a). Optimizing helical pile foundations: A comprehensive study on displaced soil volume and group behavior. Brazilian Journal of Development, 11(4), Article e79278. https://doi.org/10.34117/bjdv11n4-047
- Pessoa, E. G. (2025b). Utilizing recycled construction and demolition waste in permeable pavements for sustainable urban infrastructure. Brazilian Journal of Development, 11(4), Article e79277. https://doi.org/10.34117/bjdv11n4-046

- Pessoa, E. G., & Freitas, G. B. (2022a). Análise de custo de pavimentos permeáveis em bloco de concreto utilizando BIM (Building Information Modeling). Revistaft, 26(111), Article 86. https://doi.org/10.5281/zenodo.10022486
- Pessoa, E. G., & Freitas, G. B. (2022b). Análise comparativa entre resultados teóricos da deflexão de uma laje plana com carga distribuída pelo método de equação diferencial de Lagrange por série de Fourier dupla e modelagem numérica pelo software SAP2000. Revistaft, 26(111), Article 43. https://doi.org/10.5281/zenodo.10019943
- Pessoa, E. G., Benittez, G. S. P. A., Oliveira, N. P. de, & Leite, V. B. F. (2022). Análise comparativa entre resultados experimentais e teóricos de uma estaca com carga horizontal aplicada no topo. Revistaft, 27(119), Article 67. https://doi.org/10.5281/zenodo.7626667
- Pessoa, E. G., Feitosa, L. M., Padua, V. P., & Pereira, A. G. (2023a). Estudo dos recalques primários em um aterro executado sobre a argila mole do Sarapuí. Brazilian Journal of Development, 9(10), 28352–28375. https://doi.org/10.34117/bjdv9n10-059
- Pessoa, E. G., Feitosa, L. M., Pereira, A. G., & Padua, V. P. (2023b). Efeitos de espécies de alna eficiência de coagulação, Al residual e propriedade dos flocos no tratamento de águas superficiais. Brazilian Journal of Health Review, 6(5), 24814–24826. https://doi.org/10.34119/bjhrv6n5-523
- Santos, H., & Pessoa, E. G. (2024). Impacts of digitalization on the efficiency and quality of public services: A comprehensive analysis. Lumen et Virtus, 15(40), 4409–4414. https://doi.org/10.56238/levv15n40-024
- Silva, E. N. da. (2025). Urban circular microfactories: Local micro-plants for regenerative urban economies. Brazilian Journal of Development, 11(9), Article e82335. https://doi.org/10.34117/bjdv11n9-059
- Silva, J. F. (2025). Desafios e barreiras jurídicas para o acesso à inclusão de crianças autistas em ambientes educacionais e comerciais. Brazilian Journal of Development, 11(5), Article e79489. https://doi.org/10.34117/bjdv11n5-011
- Testoni, F. O. (2025). Niche accounting firms and the Brazilian immigrant community in the U.S.: A study of cultural specialization and inclusive growth. Brazilian Journal of Development, 11(5), Article e79627. https://doi.org/10.34117/bjdv11n5-034
- Westerterp-Plantenga, M. S., Nieuwenhuizen, A., Tomé, D., Soenen, S., & Westerterp, K. R. (2009). Dietary protein, weight loss, and weight maintenance. Annual Review of Nutrition, 29, 21–41. https://doi.org/10.1146/annurev-nutr-080508-141056