APPLICATIONS OF MACHINE LEARNING IN FORECASTING OPERATIONAL COSTS

Autores

  • Josimar Santos Viana

DOI:

https://doi.org/10.56238/rcsv6n5-005

Palavras-chave:

Machine Learning, Operational Cost Forecasting, Predictive Maintenance, Hybrid Models, Ensemble Learning, Cost Management, Time-Series Prediction

Resumo

Machine learning (ML) has emerged as a transformative tool for forecasting operational costs across industries, offering data-driven insights that enhance efficiency, risk management, and decision-making. Unlike traditional statistical models, ML approaches can capture nonlinear relationships, complex variable interactions, and hidden patterns in high-dimensional datasets. This paper discusses the main applications of ML in operational cost forecasting, focusing on predictive maintenance, energy cost prediction, hybrid modeling, and uncertainty quantification. It emphasizes the role of data quality, feature engineering, model interpretability, and governance in ensuring reliable deployment. Empirical evidence and real-world studies demonstrate that hybrid and ensemble approaches outperform single-model solutions, reducing forecasting errors and improving business adaptability. The study concludes that integrating ML with traditional forecasting techniques provides a pragmatic and effective strategy for managing financial uncertainty and optimizing resource allocation in dynamic operational environments.

Referências

Antonio, S. L. (2025). Technological innovations and geomechanical challenges in Midland Basin drilling. Brazilian Journal of Development, 11(3), Article e78097. https://doi.org/10.34117/bjdv11n3-005

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785

DA SILVA, E. N. (2024). Green nanotechnology applied to circular manufacturing. LUMEN ET VIRTUS, 14(32). https://doi.org/10.56238/levv14n32-029

Filho, W. L. R. (2025a). The role of AI in enhancing identity and access management systems. International Seven Journal of Multidisciplinary, 1(2). https://doi.org/10.56238/isevmjv1n2-011

Filho, W. L. R. (2025b). The role of zero trust architecture in modern cybersecurity: Integration with IAM and emerging technologies. Brazilian Journal of Development, 11(1), Article e76836. https://doi.org/10.34117/bjdv11n1-060

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1), 54–74. https://doi.org/10.1016/j.ijforecast.2019.04.014

Oliveira, C. E. C. de. (2025). Gentrification, urban revitalization, and social equity: Challenges and solutions. Brazilian Journal of Development, 11(2), Article e77293. https://doi.org/10.34117/bjdv11n2-010

Pessoa, E. G. (2024). Pavimentos permeáveis: Uma solução sustentável [Permeable pavements: A sustainable solution]. Revista Sistemática, 14(3), 594–599. https://doi.org/10.56238/rcsv14n3-012

Pessoa, E. G. (2025a). Optimizing helical pile foundations: A comprehensive study on displaced soil volume and group behavior. Brazilian Journal of Development, 11(4), Article e79278. https://doi.org/10.34117/bjdv11n4-047

Pessoa, E. G. (2025b). Utilizing recycled construction and demolition waste in permeable pavements for sustainable urban infrastructure. Brazilian Journal of Development, 11(4), Article e79277. https://doi.org/10.34117/bjdv11n4-046

Pessoa, E. G., Azevedo Benittez, G. S. P., de Oliveira, N. P., & Leite, V. B. F. (2022). Análise comparativa entre resultados experimentais e teóricos de uma estaca com carga horizontal aplicada no topo [Comparative analysis between experimental and theoretical results of a pile with horizontal load applied at the top]. Revistaft, 27(119), 67. https://doi.org/10.5281/zenodo.7626667

Pessoa, E. G., & Freitas, G. B. (2022a). Análise comparativa entre resultados teóricos da deflexão de uma laje plana com carga distribuída pelo método de equação de diferencial de Lagrange por série de Fourier dupla e modelagem numérica pelo software SAP2000 [Comparative analysis between theoretical deflection results of a flat slab using Lagrange differential equation with double Fourier series and numerical modeling with SAP2000]. Revistaft, 26(111), 43. https://doi.org/10.5281/zenodo.10019943

Pessoa, E. G., & Freitas, G. B. (2022b). Análise de custo de pavimentos permeáveis em bloco de concreto utilizando BIM (Building Information Modeling) [Cost analysis of permeable concrete block pavements using BIM]. Revistaft, 26(111), 86. https://doi.org/10.5281/zenodo.10022486

Recycling of rare earth elements using ionic liquids for regenerative manufacturing. (2023). International Seven Journal of Multidisciplinary, 2(5). https://doi.org/10.56238/isevmjv2n5-037

Santos, H., & Pessoa, E. G. (2024). Impacts of digitalization on the efficiency and quality of public services: A comprehensive analysis. LUMEN ET VIRTUS, 15(40), 4409–4414. https://doi.org/10.56238/levv15n40024

Silva, E. N. da. (2025). Urban circular microfactories: Local micro-plants for regenerative urban economies. Brazilian Journal of Development, 11(9), Article e82335. https://doi.org/10.34117/bjdv11n9-059

Silva, J. F. (2025). Desafios e barreiras jurídicas para o acesso à inclusão de crianças autistas em ambientes educacionais e comerciais [Legal challenges and barriers to the inclusion of autistic children in educational and commercial environments]. Brazilian Journal of Development, 11(5), Article e79489. https://doi.org/10.34117/bjdv11n5-011

Testoni, F. O. (2025). Niche accounting firms and the Brazilian immigrant community in the U.S.: A study of cultural specialization and inclusive growth. Brazilian Journal of Development, 11(5), Article e79627. https://doi.org/10.34117/bjdv11n5-034

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0

Downloads

Publicado

2022-09-13

Edição

Seção

Articles

Como Citar

Viana, J. S. (2022). APPLICATIONS OF MACHINE LEARNING IN FORECASTING OPERATIONAL COSTS. Revista Sistemática, 6(5). https://doi.org/10.56238/rcsv6n5-005