

Padrão de sensibilidade antibiótica das batérias isoladas nas infeções do tracto urinário em pacientes atendidos no Hospital Central de Maputo, Moçambique

José Luís José João

Mestre em Saúde Publica, Ministério da Saúde – Moçambique

Mónica Inroga

Mestre em Ciências de Saúde, Universidade Católica de Moçambique – Moçambique

RESUMO

As infeções do trato urinário (ITU) são prevalentes e representam um desafio global para os serviços de saúde. Elas podem ser classificadas como baixas (cistite) ou altas (pielonefrite) e afetam todas as faixas etárias, com maior incidência em mulheres. O tratamento é baseado em antibióticos, mas a resistência antimicrobiana é uma preocupação crescente, exigindo o monitoramento e o uso criterioso de antibióticos.

Palavras-chave: Infeções do Trato Urinário (ITU), Classificação, Prevalência, Tratamento, Resistência antimicrobiana, Monitoramento.

1 INTRODUÇÃO

As infeções do trato urinário (ITU) são uma das principais causas de consultas na prática médica e um dos importantes problemas que constitui desafio para os serviços de saúde de muitos países, não só pela alta prevalência, mas também pelos altos gastos com o seu tratamento, ficando atrás apenas das infecções respiratórias. As infeções do trato urinário são definidas como a invasão do sistema urinário por bactérias e ocasionalmente fungos, parasitas ou vírus, desencadeando uma resposta inflamatória nas estruturas acometidas.

As ITUs são geralmente classificadas quanto a localização e a presença de complicações. Assim, quando a infeção acomete apenas o trato inferior, é dita como ITU baixa (cistite), e se houver acometimento do trato inferior e superior em simultâneo, é classificada como ITU alta (pielonefrite).

As ITUs Podem ocorrer em todas as populações independentemente do sexo ou faixa etária, sendo mais frequentes em crianças com menos de 6 meses, mulheres jovens sexualmente ativas, durante a gravidez e em idosos com mais de 60 anos de idade.

A prevalência da ITU é maior na população do sexo feminino. Estudos epidemiológicos mostraram que uma a cada três mulheres terão ITU durante algum momento de suas vidas. Atribui-se este facto a proximidade entre a vulva e o ânus e a curta extensão da uretra, que torna suscetíveis a estas infeções.

Estudos feitos em alguns países da Africa mostram similaridade na prevalência das infeções urinária, onde a Líbia apresenta uma prevalência de 13.9%, Nigéria 13% e Etiópia 9.2%.

Em muitos casos são causadas por bacilos gram negativos, com uma taxa de prevalência de 70 a 90%, sendo a *Escherichia coli* o agente etiológico mais isolado, seguida da *Klebsiella spp* e por outro lado encontram-se as bactérias gram positivas representadas por *Staphylococcus saprophyticus* com uma prevalência de 15%. O diagnóstico da ITU depende da comprovação de bateriúria significativa, obtida por meio do exame de urocultura quantitativa.

O tratamento deve ser particularizado de acordo com a patologia e as condições clinicas do paciente, mas tem como pilares básicos a instituição de antibióticos e a drenagem imediata das vias urinárias. As fluoroquinolonas são as drogas de escolha, tendo como opções ainda as penicilinas com inibidor blactamases, os aminoglicosideos, as cefalosporinas da segunda e terceira geração, com tempo de tratamento variando entre 7 a 14 dias.

As classes de antibióticos mais usados em Moçambique pertencem a classe das Penicilinas e Cefalosporinas com inibidores b-lactamases, Macrolidos, Quinolonas, Tetraciclinas, Aminoglicosideos e Sulfamidas e Trimetoprim; Entretanto os antibióticos administrados com frequência, por exemplo, em pacientes ambulatórios, como trimetoprim e sulfametoxazol, ciprofloxacina e amoxicilina tem um perfil de resistência considerável. Este fato levantou a necessidade de proporcionar evidência científica que desperte atenção aos clinico e possibilite a atualização do guião de tratamento em utilização nas demais unidades sanitárias do país.

Em Moçambique é muito comum, a utilização de antibióticos de amplo espetro para o tratamento de diversas infeções incluindo as infeções do trato urinário, e geralmente são usados para tratamentos empíricos o que propicia o surgimento de Bactérias resistentes a ação dos antibióticos.

A escolha do tratamento com um antimicrobiano adequado configura-se um desafio para os profissionais de saúde, devido o crescente número de microrganismos resistentes.

A maioria dos casos de ITU não complicada é tratada empiricamente com antibióticos de amplo espectro, e todos os antibióticos prescritos na comunidade são usados para tratar ITUs, o que corresponde ao uso excessivo. A progressão da resistência antibiótica potencia o aparecimento de infecções multirresistentes de difícil tratamento e oneroso, e por ser irreversível ou de reversão muito lenta, torna-se particularmente preocupante.

A Resistência antibiótica representa um problema complexo resultante de múltiplos fatores, entre os quais se encontra o uso indiscriminado dos antibióticos. Trata-se de um problema grave à escala mundial que afeta tanto os países desenvolvidos como os em desenvolvimento.

O tratamento empírico pode ser variável entre determinadas regiões, já que é baseado na prevalência do agente, e na resistência ao antimicrobiano local. O erro na escolha do antimicrobiano pode levar a resistência de algumas bactérias, ou até a morte do paciente. Diante disso, ressalta-se a importância do monitoramento, através de antibiogramas, que servem de guia para a escolha do tratamento adequado de

modo a oferecer um melhor prognóstico ao paciente. Assim, o teste de sensibilidade antibiótica constitui uma ferramenta imprescindível na monitoria do perfil de resistência e suscetibilidade dos microrganismos causadores de ITUs. Os resultados do estudo servem de base para a monitoria e avaliação da tendência de resistência aos antibióticos ao nível dos Hospitais e avaliar a eficácia dos antibióticos usados para o tratamento das infeções urinárias.

2 OBJETIVO

O estudo teve como objetivo, conhecer o padrão de sensibilidade antibiótica das bactérias isoladas nas infecções do trato urinário em pacientes atendidos no Hospital Central de Maputo - Moçambique no período de 2019 a 2020.

3 METODOLOGIA

Foi realizado um estudo descritivo retrospetivo, com abordagem quantitativa dos dados existentes nos livros de registos das uroculturas que apresentaram crescimento de bactéria no período de 2019 a 2020. Os participantes foram selecionados através da amostragem probabilística Aleatória sistemática.

Os dados foram colhidos nos livros de registo do Laboratório de Microbiologia do Hospital Central de Maputo, e a posterior foram introduzidos na planilha *Microsoft Excel*.

A análise dos dados foi feita através do programa estatístico *Epi info* versão 7.2.3.1.

A associação da resistência antibiótica da bactéria isolada e a proveniência da amostra foi determinada através do teste qui-quadrado com um nível de significância de 5% ($\alpha=0.05$), portanto a associação das duas variáveis foi considerada se o valor $p \le \alpha$. O estudo respeitou os princípios éticos para pesquisa clínica, o protocolo de pesquisa foi aprovado pelo Comité Interinstitucional de bioética de Sofala com o n° 024/CIBS/2022.

4 RESULTADOS

4.1 RESULTADOS DEMOGRÁFICOS

O estudo foi constituído por 197 amostras de uroculturas positivas, sendo 121 (61,4%) pertencentes a pacientes do sexo feminino (a maioria) e 76 (38,6%) do sexo masculino.

Em relação a proveniência das amostras, 92 (46.7%) eram de pacientes ambulatórios e 105 (53.3%) de pacientes internados em diversos serviços.

No que diz respeito as amostras provenientes do internamento, a maior parte eram das enfermarias de Medicina 42 (21.3%) e Pediatria 41 (20.8%). Para mais detalhes vide a tabela nº 1.

Em relação a idade, verificou-se que a idade mínima foi de 1 ano e idade máxima foi de 91 anos. A média das idades foi de 34 anos, com uma mediana de 34 anos e moda de 1 ano. 25% dos pacientes tinham menos de 14 anos, metade dos pacientes tinham menos de 34 anos e 75% com menos de 55 anos.

Tabela 1: Distribuição de paciente de acordo com o sexo e a proveniência. *Outras (Cirurgia, Urologia, Gastroenterologia,

Dermatologia, Clinica, Neurologia e Banco de Socorros)

			SI	TOTAL			
Proveniência		Masculino				Fem	inino
		Absoluto	%	Absoluto	%	Absoluto	%
	Ambulatório	32	34.8	60	65.2	92	46.7
so	Medicina	13	30.9	29	69.1	42	21.3
 nad	Pediatria	24	58.5	17	41.5	41	20.8
Internados	Obstetrícia	0	0	11	100	11	5.6
In	Outros*	7	63.6	4	36.4	11	5.6
	TOTAL	76	38.6	121	61.4	197	100

Fonte: Elaborado pelo autor com base no Epi info versão 7.2.3.1 e Microsoft Excel 2013

4.2 BACTÉRIAS FREQUENTES

Durante o período em análise (2019 - 2020) e com recurso a amostragem probabilística Aleatória sistemática foram selecionadas 197 resultados de urocultura positivas, onde houve crescimento de bactérias gram negativas e positivas, com maior destaque para bactérias gram negativas pertencentes a família *Enterobacteriaceae* (88.32%), onde a maior frequência foi registada para *Escherichia coli* (43.15%), *Klebsiella sp* (21.32%), *Enterococcus sp* (10.15%) e *Enterobacter sp* (9.14%), conforme ilustra a tabela 2.

Tabela 2: Distribuição de isolados em relação a proveniência. *Outras (Acinetobacter sp, Citrobacter sp, Proteus sp, Pseudomona

aeroginosa, Sptreptococus spp, Staphylococcus saprophyticus)

Isolados			Proven	iencia	TOTAL			
		Ambulatorio		Internamento		TOTAL		
		Absoluto	%	Absoluto	%	Absoluto	%	
	Escherichia coli	52	56.52	33	31.4	85	43.15	
So.	Klebsiella sp	15	16.3	27	25.7	42	21.32	
Isolados	Enterococcus sp	5	5.43	15	14.3	20	10.15	
Sol	Enterobacter sp	5	5.43	13	12.4	18	9.14	
	Outros*	15	16.32	17	16.2	32	16.24	
	TOTAL	92	100	105	100	197	100	

Fonte: Elaborado pelo autor com base no Epi info *versão 7.2.3.1* e Microsoft Excel 2013

4.2.1 Perfil de sensibilidade antibiótica das bactérias frequentes

4.2.1.1 Perfil de sensibilidade aos antibióticos de Escherichia coli

Em relação a *Escherichia coli*, as altas taxas de resistência foram registadas para Ampicilina (90.5%), Cotrimoxazol (66.7%) e Acido Naldixico (57.9%). As maiores taxas de sensibilidade foram registadas para Imepenem (94.9%), Amicacina (87.9%) e Nitrofurantoina (84.2%). Para mais detalhes vide a tabela 3.

Tabela 3: Descrição do perfil de sensibilidade antibiótica de E. coli

	Parelle de 1. TCA						
			Resultado de TSA				
	Antibióticos	Isolados	Intermediário	Resistente	Sensível		
			(%)	(%)	(%)		
	Acido Naldixico	69	5.8	57.9	36.3		
	Amicacina	33	3	9.1	87.9		
	Amoxicilina	9	0	33.3	66.7		
	Amoxicilina/Acido Clavulanico	50	20	40	40		
эli	Ampicilina	63	0	90.5	9.5		
Escherichia coli	Cefotaxima	15	6.7	40	53.3		
hic	Cefoxitina	50	6	18	76		
eric	Ceftazidima	64	4.7	25	70.3		
ch	Ceftriaxona	55	0	38.2	61.8		
Es	Cotrimoxazol	21	0	66.7	33.3		
	Ciprofloxacina	48	4.2	50	45.8		
	Gentamicina	20	5	30	65		
	Imepenem	78	1.2	3.9	94.9		
	Nitrofurantoina	76	2.6	13.2	84.2		

Fonte: Elaborado pelo autor com base no Epi info versão 7.2.3.1 e Microsoft Excel 2013

4.2.1.2. Perfil de sensibilidade aos antibióticos de Klebsiella sp

Dos antibióticos testados para os isolados do genero *Klebsiella*, maior parte registou altas taxas de resistência com maior destaque para Ampicilina (100%), Cotrimoxazol (90.9%), Norfloxacina (80%), Amoxicilina/Acido clavulanico (60.9%), Ceftazidima (60.6%), Cefotaxima (60%), Ceftriaxona (57.1%), Acido Naldixico (56.3%) e as drogas mais efetivas foram: Imepene (93.8%), Amicacina (85.7%), Cefoxitina (64%), conforme ilustra a tabela 4.

Tabela 4: Descrição do perfil de sensibilidade antibiótica de Klebsiella spp

	Tuocia ii Beserição do peri.	Resultado de TSA				
	Antibióticos	Isolados	Intermediário (%)	Resistente (%)	Sensível (%)	
	Acido Naldixico	32	6.3	56.3	37.5	
	Amicacina	14	7.2	7.1	85.7	
	Amoxicilina	3	0	100	0	
	Amoxicilina/Acido Clavulanico	23	8.7	60.9	30.4	
	Ampicilina	28	0	100	0	
)	Cefotaxima	5	0	60	40	
Klebsiella spp	Cefoxitina	25	16	20	64	
ella	Ceftazidima	33	15.2	60.6	24.2	
ebsi	Ceftriaxona	28	0	57.1	42.9	
Kl	Cotrimoxazol	11	0	90.9	9.1	
	Ciprofloxacina	25	24	52	24	
	Gentamicina	11	9	45.5	45.5	
	Imepenem	32	3.1	3.1	93.8	
	Levofloxacina	0	0	0	0	
	Nitrofurantoina	35	11.4	37.1	51.4	
	Norfloxacina	5	0	80	20	

Fonte: Elaborado pelo autor com base no Epi info versão 7.2.3.1 e Microsoft Excel 2013

4.2.1.3. Perfil de sensibilidade aos antibióticos de *Enterococcus sp*

Para as espécies do género Enterococcus, as altas taxas de resistência foram registadas para Ciprofloxacina (100%), Gentamicina (71,4%) e Ampicilina (66,7%). Para este género, a eficácia antibiótica foi registada para Nitrofurantoina (55,6%) (vide a tabela 5).

Tabela 5: Descrição do perfil de sensibilidade antibiótica de Enterococcus sp

	Resultado de TSA				
	Antibióticos	Isolados	Intermediário (%)	Resistente (%)	Sensível (%)
	Acido Naldixico	1	0	100	0
	Amicacina	1	0	0	100
	Amoxicilina	2	0	50	50
	Amoxicilina/Acido Clavulanico	0	0	0	0
	Ampicilina	15	0	66.7	33.3
ds	Cefotaxima	1	0	0	100
	Cefoxitina	1	0	0	100
Enterococcus	Ceftazidima	0	0	0	0
20.	Ceftriaxona	1	0	0	100
ıter	Cotrimoxazol	1	0	100	0
Εr	Ciprofloxacina	14	0	100	0
	Gentamicina	7	0	71.4	28.6
	Imepenem	1	0	0	100
	Levofloxacina	0	0	0	0
	Nitrofurantoina	18	11.1	33.3	55.6
	Norfloxacina	0	0	0	0

Fonte: Elaborado pelo autor com base no Epi info versão 7.2.3.1 e Microsoft Excel 2013

4.2.1.4. Perfil de sensibilidade aos antibióticos de Enterobacter sp

Os isolados do genero *Enterobacter* apresentaram altas taxas de resistência principalmente para Ampicilina (91,7%), Amoxicilina/Acido Clavulanico (88, 8%), Ceftriaxona (77,8%), Acido Naldixico (73,3%), Ciprofloxacina (69,2%) e Ceftazidima (66.7%). No que diz respeito a sensibilidade antibiotica, a eficácia antibiotica foi registada para Amicacina (100%), Imepenem (100%) e Cefoxitina (80%), conforme ilustra a tabela.

Tabela 6: Descrição do perfil de sensibilidade antibiótica de *Enterobacter sp*

			Resultado de TSA			
	Antibióticos	Isolados	Intermediário (%)	Resistente (%)	Sensível (%)	
	Acido Naldixico	15	6.7	73.3	20	
	Amicacina	6	0	0	100	
	Amoxicilina	3	33.3	66.7	0	
r sp	Amoxicilina/Acido Clavulanico	9	0	88.8	11.2	
ztei	Ampicilina	12	0	91.7	8.3	
Enterobacter	Cefotaxima	2	0	50	50	
ero	Cefoxitina	10	20	0	80	
Ent	Ceftazidima	15	0	66.7	33.3	
	Ceftriaxona	9	0	77.8	22.2	
	Cotrimoxazol	3	0	66.7	33.3	
	Ciprofloxacina	13	15.4	69.2	15.4	

Gentamicina	0	0	0	0
Imepenem	14	0	0	100
Levofloxacina	0	0	0	0
Nitrofurantoina	17	5.9	52.9	41.2
Norfloxacina	1	0	100	0

Fonte: Elaborado pelo autor com base no Epi info versão 7.2.3.1 e Microsoft Excel 2013

4.3 RESISTÊNCIA ANTIBIÓTICA DAS BACTÉRIAS ISOLADAS EM RELAÇÃO A PROVENIÊNCIA DA AMOSTRA

Para se verificar associação da resistência antibiótica da batéria isolada em relação a proveniência, foi definida a proveniência do paciente como a variável de exposição, onde o internamento é a variável com exposição e o ambulatório sem exposição. A resistência antibiótica foi considerada como variável de resultado. O nível de significância definido foi de 5% ($\alpha = 0.05$).

4.3.1 Interpretação do resultado

Com base no *Epinfo* foi calculado o qui-quadrado através do cruzamento das variáveis proveniência (variável de exposição) e antibiótico usado no teste de sensibilidade (variável do resultado) e obteve-se o seguinte resultado:

Para Acido Naldixico (p = 0.11), Ampicilina (p = 0.29), Amoxicilina (F = 0.65), Cefoxitina (p = 0.29), Amoxicilina/Acido clavulanico (p = 0.17), Gentamicina (p = 0.26), Imepenem (p = 0.09) Nitrofurantoina (p = 0.11), Cotrimoxazol (p = 0.15), apresentaram proporções maior que 5% (p > 0.05) e pode-se afirmar que a resistência antibiótica das bactérias isoladas em relação a estes antibióticos não está associada a proveniência da amostra. Paradoxalmente a este resultado Amicacina (p = 0.05), Ceftazidima (p = 0.00), Ceftriaxona (p = 0.00), Ciprofloxacina (p = 0.00) apresentaram proporções igual ou abaixo de 5% ($p \le 0.05$) o que permite afirmar que a resistência antibiótica das bactérias isolados em relação a estes antibióticos está associada a proveniência da amostra. Importa referir que para os casos em que as frequências esperadas eram inferior a 5 foi considerado o teste exaro de Fisher (p = 0.05), (vide a tabela 7).

Tabela 7: Associação da resistência antibiótica das bactérias isoladas em relação a proveniência da amostra. X² – Nível de

significância 5%; *Associação estatisticamente significativa

		biótico stado			Antibiótico Testado		
Proveniência	Amp	oicilina	Proporção (P)	Proveniência		lina/Acido ılanico	Proporção (P)
	R	S	0.29		R	S	0.17
Ambulatório	53	8		Ambulatório	31	21	
Internado	62	5		Internado	30	11	
		cido dixico	Proporção (P)		Cotrir	noxazol	Teste de Fisher (F)
	R	S	0.11		R	S	0.15
Ambulatório	40	28		Ambulatório	16	10	
Internado	48	19		Internado	13	2	
	Amo	xicilina	Teste de Fisher (F)		Ciprof	loxacina	Proporção (P*)
	R	S	0.65		R	S	0.00
Ambulatório	4	6		Ambulatório	27	24	
Internado	6	4		Internado	54	12	
	Ami	cacina	Teste de Fisher (F*)		Genta	micina	Proporção (P)
	R	S	0.05		R	S	0.26
Ambulatório	1	31		Ambulatório	7	14	
Internado	7	29		Internado	12	12	
	Cefo	xitina	Proporção (P)		Imepene	em Fisher (F	Teste de
	R	S	0.29		R		S 0.09
Ambulatório	12	36		Ambulatório	8	67	
Internado	17	32		Internado	2	73	
	Cefta	zidima	Proporção (P*)		Nitrofu	rantoina	Proporção (P)
	R	S	0.00		R	S	0.11
Ambulatório	20	46		Ambulatório	23	55	
Internado	45	24		Internado	36	51	
	Ceftr	iaxona	Proporção (P*)				
	R	S	0.00				
Ambulatório	19	35					
Internado	35	21					

Fonte: Elaborado pelo autor com base no Epi info versão 7.2.3.1 e Microsoft Excel 2013

4.4 DISCUSSÃO DOS RESULTADOS

A maior frequência de bactérias causadoras das infeções do trato urinário foi verificada nos pacientes do sexo feminino com 61,4%, em concordância aos resultados de Habte e Mohammed, onde a prevalência de uropatogenos no sexo feminino foi de 65.4% e 60% respetivamente (5,11). As ITUs são mais frequentes no sexo feminino devido a fatores anatómicos, como a uretra curta que facilita a colonização por bactérias do trato digestivo, que ascendem através da uretra e multiplicam-se nas vias urinárias

Em relação a proveniência, maior parte (53,3%) das bactérias causadoras de ITU, foram isolados de pacientes internados, principalmente nas enfermarias de Medicina e Pediatria. Estes fatos foram observados nos estudos similares em que a prevalência de bactérias nos pacientes internados foi de 54,7%. Essas

bactérias sao isoladas na sua maioria em pacientes internados nas enfermarias de Medicina e Pediatria. Os doentes internados podem apresentar prevalências elevadas, especialmente associadas à falta de higiene e à algaliação.

Em relação a frequência das bactérias, verificou-se que na sua maioria eram Gram negativo, pertencentes a família *Enterobacteriaceae* (88.32%), onde a maior frequência foi registada para *Escherichia coli* (43.15%), *Klebsiella sp* (21.32%), *Enterococcus sp* (10.15%) e *Enterobacter sp* (9.14%), em conformidade com resultados de Habte, que isolou *Escherichia coli* (39%), Klebsiella *spp* (20,8%) e *Enterococcus spp* (8.2%).

A bactéria que dominou o perfil bacteriológico neste estudo foi a *Escherichia coli* com uma frequência de 43,15%. Outros resultados similares a este foram obtidos nos estudos de Iregbu & Nwajiobi-Princewill e Mohammed *et al.*, onde a *Escherichia coli* foi isolada com prevalências de 37% e 55,6% respetivamente. Esta bactéria é a mais descrita na maioria dos estudos sobre infeções do trato urinário, independentemente das caraterísticas das populações.

A maior prevalência de *Escherichia coli* uropatogenica está associada a numerosos fatores de virulência (α-hemolisina, fator de necrose citotóxico, adesinas), pois estes fatores suportam a sua capacidade de aderir às células uroepiteliais ajudando a resistir ao efeito batericida do soro e aumentando a hidrofobicidade da superfície celular conduzindo a lesão tecidual e também por estar presente no tracto digestivo, que acaba contaminando o trato urinário nas condições deficientes de higiene.

Os resultados deste estudo mostraram que a *Escherichia coli* apresenta altas taxas de resistência para Ampicilina (90.5%), Cotrimoxazol (66.7%) e Acido Naldixico (57.9%). Resultados similares foram observados no estudo de Monteiro *et al.*, onde Ampicilina apresentou 86.7% e Acido Naldixico 55,6% de taxa de resistência. Em estudos similares a *Escherichia coli* registou 66,7% e 100% de taxa de resistência para Acido Naldixico e Cotrimoxazol respetivamente.

Para os isolados do género *Klebsiella*, as altas taxas de resistência antibiótica foram observadas com maior destaque para Ampicilina (100%), Cotrimoxazol (90.9%), Amoxicilina/Acido clavulanico (60.9%), Ceftazidima (60.6%), Cefotaxima (60%), Ceftriaxona (57.1%), facto observado por Monteiro *et al.* em que no seu estudo registou 93.9% para Ampicilina, 86% para Amoxicilina/Acido clavulanico, 51.1% para Ceftazidima e para Cefotaxima, paradoxalmente aos resultados do presente estudo registou 34.4%. Resultados de Meeren *et al.* apontaram 100% de taxa de resistencia para isolados de *Klebsiella sp* para os antibióticos Ceftazidima e Cefotaxima.

Estudo de Ayoyi *et al.* demostrou que *Escherichia coli* e *Klebsiella sp* apresentam perfis de resistência que variam de 64,7% a 90,6% para antibióticos como: Ampicilina, Cotrimoxazol e Cefotaxima.

O estudo mostrou ainda, que *Enterococcus sp* é resistência a Ciprofloxacina (100%), Gentamicina (71,4%) e Ampicilina (66,7%), em dissonância com os resultados de de Goel, onde Ciprofloxaacina, Ampicilina e Gentamicina apresentaram 68.8%, 36% e 32.7% respetivamente.

Relatório da pesquisa de Ayoyi *et al.* demostrou que *Enterococcus sp* apresenta taxas elevadas de resistência que variam de 50% a 75% para Ceftazidima, Gentamicina, Cefotaxima e Cotrimoxazol.

Para *Enterobacter sp* a resistência foi observada principalmente para Ampicilina (91,7%), Amoxicilina/Acido Clavulanico (88,8%), Ceftriaxona (77,8%), Acido Naldixico (73,3%), Ciprofloxacina (69,2%) e Ceftazidima (66.7%), em contraste aos resultados de Girma *et al.*, onde *Enterobacter sp* não apresentou resistência para Ceftriaxona, Gentamicina, Ciprofloxacina.

As altas taxas de resistência em patógenos isolados a antibióticos como Amoxicilina, Cefotaxima, ceftazidima, Ampicilina, Ceftriaxona, Acido Naldixico e Cotrimoxazol podem ser explicadas pelo fato de estas drogas serem comummente usadas e geralmente de forma empírica e ainda pelo efeito selectivo do tratamento de um paciente com múltiplos antimicrobianos.

No geral, os antibióticos mais eficazes para todos isolados neste estudo foram: Nitrofurantoina (55,6% - 84.2%), Cefoxitina (64% - 80%), Amicacina (85.7% - 100%) e Imepenem (94.9% - 100%), o mesmo resultado foi relatado por Iregbu *et al.*, em que a maior taxa de sensibilidade antibiótica para uropatogenos isolados é de 98% para Amicacina, 97% para Imepenem e 78% para Nitrofurantoina. Mitiku *et al.* observou na sua pesquisa que Imepenem apresenta alta taxa de eficácia na ordem de 96,2%, seguida da Nitrofurantoína e Sulfametoxazol-trimetoprim com 78,6% e 70,9% respetivamente.

Estudo de Ayoyi *et al.* mostrou que *Escherichia coli* e *Klebsiella sp* apresentam perfis de sensibilidade antibiótica para Ciprofloxacina, Acido Naldixico, Gentamicina, Ceftazidima e Imepenem, com percentagens que variam de 55,3 a $100^{(20)}$; Enquanto que apontaram nos seus estudos que fosfomicina (98,3%), Cefotaxima (95%), Ciprofloxacina (93,9%), Levofloxacina (93,9%), Imipenem (98.5%), Meropenem (91%) e Norfloxacina (89.7%) como antibióticos recomendados para o tratamento de ITU.

Harrison *et al.*, sugere o uso de ampicilina, gentamicina, quinolona, ceftriaxona, Imepenem para o tratamento das ITUs complicadas em homens e mulheres, causadas por *E. coli, Proteus mirabilis e Klebsiella pneumoniae, Pseudomonas sp, Serratia sp, Enterococos e Staphylococos sp, com sintomatologia leve a moderada.*

O estudo mostrou que a resistência antibiótica das bactérias isoladas em relação a Amicacina (p=0.05), Ceftazidima (p=0.00), Ceftriaxona (p=0.00), Ciprofloxacina (p=0.00) está associada a proveniência da amostra de acordo com o teste qui-quadrado $(p\le0.05)$. Estes resultados convergem com os achados pelo Monteiro $et\ al.$, em relação a Amicacina (p=0.04) e Ceftazidima (p=0.00), onde o resultado de qui-quadrado para estes fármacos mostrou que a resistência antibiótica das bactérias isoladas e a proveniência do paciente apresentam uma associação estatisticamente significativa.

5 CONSIDERAÇÕES FINAIS

- As infeções do trato urinário são frequentes nos pacientes do sexo feminino;
- As ITUs são mais frequentes em pacientes internados, principalmente nas enfermarias de Medicina e Pediatria;
- O perfil bacteriológico foi dominado por Escherichia coli (43,15%) em todas ITUs diagnosticadas no HCM, principalmente nos pacientes ambulatórios, destacando-se assim como principal agente das infeções comunitárias e nosocomiais;
- Os antibióticos como: Ampicilina, Cotrimoxazol, Acido Naldixico, Amoxicilina/Acido clavulanico,
 Ciprofloxacina, Gentamicina, Ceftazidima, Cefotaxima, Ceftriaxona mostraram baixa eficácia para
 o tratamento de ITUs por terem apresentado altas taxas de resistência antibiótica para todos isolados;
- Os resultados deste estudo mostram que as altas taxas de resistência a Cefalosporinas da 3ª geração (Ceftazidima, Cefotaxima, Ceftriaxona) e a antibióticos comuns pode estar associadas a presença de estirpes multi-droga ambiente hospitalar e uso indiscriminado de antibióticos;
- No geral as maiores taxas de sensibilidade antibiótica foram registadas para Imepenem Amicacina,
 Nitrofurantoina e Cefoxitina o que mostram que estes fármacos são as melhores alternativas para o tratamento de ITUs em pacientes ambulatórios e internados;
- O estudo mostrou que a resistência antibiótica das bactérias isoladas em relação a Amicacina,
 Ceftazidima, Ceftriaxona, Ciprofloxacina e a proveniência da amostra apresenta uma associação estatisticamente significativa de acordo com o resultado do teste qui-quadrado (p≤0.05).

REFERÊNCIAS

BRAOIOS, A. et al. Infecções do trato urinário em pacientes não hospitalizados: Etiologia e padrão de resistência aos antimicrobianos. *Bras Patol Med La*, v. 45, n. 6, p. 449-456, 2009.

LOPES, R. M.; TAJARA L. C. F. Urgência em Urologia. Lisboa: Roca, 2008.

SILVA, J., M., P. et al. Aspectos atuais no diagnóstico e abordagem da infecção do trato urinário, 2014.

ARAUJO, K. L; QUEIROZ, A. C. Análise do perfil dos agentes causadores de infecção do trato urinário e dos pacientes portadores, atendidos no Hospital e Maternidade Metropolitano de São Paulo, *J.HealthSci. Inst.*, v. 30, n.1, 2012.

MOHAMMED, M. A. et al. Prevalence and antimicrobial resistance pattern of bacterial strains isolated from patients with urinary tract infection in Messalata Central Hospital, Libya. *Asian Pacific Journal of Tropical Medicine*, v. 9, n. 8, p. 771–776, 2016.

IREGBU, K. C.; NWAJIOBI-PRINCEWILL, P. I. Urinary Tract Infections in a Tertiary Hospital in Abuja, Nigeria. *African journal of clinical and experimental microbiology*, v. 14, n. 3, p. 169-173, 2013.

BEYENE, G.; TSEGAYE, W. Bacterial Uropathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern in Jimma University Specialized Hospital, Southwest Ethiopia. *Ethiop J Health Sci*, v. 21, n. 2, 141-146, 2011.

MEIER, S. et al. Extende-spectrum β -lactamase-producing gram-negative pathogens in community-acquired urinary tract infections, an increasing challenge for antimicrobial therapy. *Infection*, v. 39, n. 4, p. 333-340, 2011.

COMISSÃO TÉCNICA DE TERAPÊUTICA E FARMÁCIA. Formulário nacional de medicamentos. Maputo, 2007.

MONTEIRO, L. G. S.; ZIMBA, T. F.; SIDAT, M. M. Padrão de Sensibilidade aos Antimicrobianos de Enterobacteriaceae Isoladas no Hospital Central de Maputo, Moçambique 2009 – 2010. *Rev. cient. UEM*, v. 1, n. 1, p. 7-13, 2015.

HABTE, T.M. et al. Hospital and community isolates of uropathogens at a tertiary hospital in South Africa. *PubMed*, v. 99, n. 8, p. 584-587, 2009.

RAHIMKHANI, M.; KHAVARI-DANESHVAR, H.; SHARIFIAN, R. Asymptomatic Bacteriuria and Pyuria in Pregnancy. *Acta Medica Iranica*, v. 46, n. 5, p. 409-412, 2008.

HAIDER, G. et al.2010 Risk factors of urinary tract infection in pregnancy. *J Pak Med Assoc*, v. 60, n. 3, p. 213-216, 2010.

ESTALEVA, C. E. L. et al. High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique, *BMC Infectious Diseases*, 2019.

CHEN, S. L. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. *PNAS*, v. 106, n. 52, p. 439- 444, 2009.

AKRAM, M.; SHAHID, M.; Khan, A. U. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India. *PubMed*, v. 6, n. 4, p. 2007.

JADHAV, S. Virulence characteristics and genetic affinities of multiple drug resistant uropathogenic Escherichia coli from a semi urban locality in India. *PloS ONE*, v. 6, n. 3, p. 1-7, 2011.

MEEREN, B. T. V. et al. Extremely High Prevalence of Multi-resistance among Uropathogens from Hospitalised children. *S Afr Med J*, v. 103, n. 6, p. 382-386, 2013.

GOEL, V. Community Acquired Enterococcal Urinary Tract Infections and Antibiotic Resistance Profile in North India, *Journal of Laboratory Physicians*, v. 8, n. 1, p. 50 – 54, 2016.

AYOYI, A. O. Prevalence, aetiology and antibiotic sensitivity profile of asymptomatic bacteriuria isolates from pregnant women in selected antenatal clinic from Nairobi, Kenya, *The Pan African Medical Journal*, v. 26, n. 41, p. 1-12, 2017.

GIRMA, A.; AEMIRO, A. The Bacterial Profile and Antimicrobial Susceptibility Patterns of Urinary Tract Infection Patients at Pawe General Hospital, Northwest Ethiopia, *Hindawi Scientifica*, p. 1 – 8, 2022.

PIÉBOJI, J. et. al. Antimicrobial resistance of Gram-negative bacilli isolates from inpatients and outpatients at Yaounde Central Hospital, Cameroon. *Journal Infectious Diseases*, v. 8, n.1, p. 147–154, 2004.

MITIKU, A. et al. Magnitude and antimicrobial susceptibility profiles of Gram Negative bacterial isolates among patients suspected of urinary tract infections in Arba Minch General Hospital, southern Ethiopia, *PLoS ONE*, v. 17, n. 12, p. 1-16, 2022.

HARRISON A. I. et al. Manual de Medicina. Rio de Janeiro: Guanabara, 2011.