

A fabricação de placas de circuito impresso e o ensino de química sob uma abordagem CTSA

Raquel Rodrigues Teixeira Benevides

Bacharel em Química Ambiental e mestre em Ensino de Química IFPR – Campus Barração

Jovane Gonçalves dos Santos

Graduado em Ciências Sociais e Mestre em Ciências Sociais IFPR – Campus Barração

João Henrique Vieira

Estudante do curso técnico em Administração IFPR – Campus Barração

RESUMO

A contextualização de atividades experimentais a partir da inclusão da vida cotidiana dos estudantes, e de conteúdos CTSA proporcionam uma visão mais ampla dos fenômenos químicos, ressignificando o papel da escola para a sociedade, dando significado às atividades experimentais e aos conteúdos científicos, contribuindo para a aprendizagem de conteúdos científicos e para a formação cidadã dos estudantes, logo este artigo visa apresentar uma atividade para o ensino de reações de oxirredução sob uma abordagem CTSA com a temática Placas de circuito impresso PCI). Ou seja, os estudantes construíram uma PCI e foram construídos com eles conteúdos CTSA acerca da extração de metais e o descarte de equipamentos eletrônicos. A presente atividade foi parte do projeto de ensino: "Atividades experimentais: a ciência e a tecnologia no cotidiano" desenvolvido no IFPR - Campus Barração.

Palavras-chave: CTSA (Ciência, Tecnologia, Sociedade e Ambiente), Placas de circuito impresso (PCI), Reações de oxirredução, Ensino de ciências, Educação científica.

1 INTRODUÇÃO

As placas de circuito impresso (PCI) são como o esqueleto de um dispositivo eletrônico, ou seja, elas servem como base onde as peças (componentes eletrônicos como: chips, resistores, capacitores, etc.) são montadas e conectadas. Elas são feitas de um material isolante, coberto por camadas de cobre que formam os "caminhos" por onde a eletricidade flui. As PCI facilitam a conexão entre componentes internos e torna os dispositivos mais compactos, e pela sua "simplicidade" facilitam a produção de eletrônicos em grande escala.

A fabricação dessas placas envolve uma reação de oxirredução, a fim de corroer o cobre excedente da placa deixando apenas as trilhas pertencentes ao circuito elaborado, para posterior conexão dos elementos desejados.

7

As PCI são utilizadas em equipamentos eletrônicos, por exemplo: celulares e computadores, logo, estão amplamente presentes no nosso cotidiano, e sua composição é variada, apresentando metais como ouro, alumínio, cobre, chumbo, níquel, estanho, paládio, prata e zinco detectados em placas de computadores descartados analisadas por Ribeiro (2013).

Segundo Aikenhead (2009), o ensino CTSA tem como proposta a integração dos conhecimentos canônicos de ciências e do cotidiano do aluno, como subsídio para a que os estudantes compreendam seu mundo cotidiano, partindo de sua realidade e dos seus conhecimentos e considerando o protagonismo estudantil no processo de ensino-aprendizagem, logo, o processo é centrado no aluno e não na ciência.

Acevedo-Díaz (1997) aponta os diferentes objetivos do ensino CTSA na formação do cidadão: a) ajudar na compreensão dos conhecimentos científicos e tecnológicos, suas relações e diferenças, bem como atrair os estudantes para as carreiras profissionais relacionadas às áreas de ciência e de tecnologia; b) compreender o desenvolvimento científico e tecnológico em seu contexto histórico e social; c) compreender os impactos sociais e ambientais decorrentes do desenvolvimento científico e tecnológico, permitindo sua participação na sociedade para tomadas de decisões. O autor ressalta o terceiro objetivo como o mais importante para a educação básica.

Nessa perspectiva, a abordagem de educação CTSA visa a interação entre educação científica, tecnológica e social, na qual, as discussões históricas, éticas, políticas e sociais, ambientais são articuladas a conteúdos científicos e tecnológicos, permitindo a compreensão de como o desenvolvimento da ciência e da tecnologia depende e implica em interesses políticos e econômicos, de valores e ideologias da sociedade e sobre o meio ambiente em que vivemos, construindo um saber para a vida. (SANTOS, 2007).

Na prática, a educação CTSA apresenta uma estrutura didática contextualizada e desenvolvida em aulas dialógicas, em que o estudante é ativo no processo de ensino-aprendizagem, seja por meio da realização de experimentos, ou por meio de outras atividades que estimulem a sua participação na organização do conhecimento.

Este artigo apresenta uma proposta para o ensino do conteúdo de oxirredução a partir da realização de uma atividade experimental temática sob a abordagem Ciência, Tecnologia, Sociedade e Ambiente (CTSA). Esse modelo de aula foi desenvolvido durante a execução do projeto de ensino: Atividades experimentais: a ciência e a tecnologia no cotidiano; no decorrer do ano de 2023 com estudantes dos cursos Técnicos Integrados em Administração e Informática do IFPR- câmpus Avançado Barração.

A BNCC (2018) apresenta os Temas Contemporâneos Transversais (TCTs) como potencial para a integração de conteúdos podendo instrumentalizar os estudantes para um maior entendimento da sociedade em que vivem. Assim, a escolha do tema "Ciência e tecnologia" vem ao encontro da

presente proposta didática, a qual, a partir do contexto PCI visou articular conteúdos de química e as interrelações entre o conhecimento científico abordado e questões tecnológicas, sociais e ambientais envolvidas na fabricação das placas PCI, ou seja, integrando o conteúdo científico canônico e o conteúdo CTS, produzindo o conteúdo científico CTS de acordo com Aikenhead (2009).

Silva e Marcondes (2011), apresentam um modelo estrutural de uma unidade didática contextualizada, no qual, questões como: o que é? Quais as causas e consequências? Orientam a uma visão geral do problema facilitando a contextualização do conteúdo a ser estudado, ressaltando a importância da linguagem próxima a linguagem do estudante, para que posteriormente seja introduzida a linguagem científica. Os conceitos químicos são introduzidos por meio de atividades envolvendo diferentes estratégias, para o desenvolvimento do conhecimento científico, como por exemplo, experimentos, aula expositiva-dialogada, leitura de textos científicos etc. A linguagem do estudante vai se transformando, e o professor realiza a síntese dos conhecimentos abordados tecendo as relações entre eles, que facilitará para ampliação da visão do estudante, e subsidiando sua intervenção na sociedade (SILVA e MARCONDES, 2011). Corroborando com as referidas autoras, Aikenhead (2009) considera para a aprendizagem dos estudantes, que eles se tornem melhores críticos, comunicativos, criativos na resolução de problemas e capazes de tomar decisões num contexto diário relacionado à ciência, com maior responsabilidade social.

Assim, considerando o grande interesse dos estudantes em aulas experimentais e suas potencialidades para a construção do conhecimento científico de forma significativa quando desenvolvidas de forma contextualizada e que estimulam a comunicação, o trabalho colaborativo, a reflexão-ação; esta proposta didática buscou superar práticas experimentais de repetição técnica, que pouco contribuem para a aprendizagem dos estudantes.

Diversificando os conteúdos de aprendizagem, estimulando a participação crítica dos estudantes e levantando questões de interesse social, além de garantir que o estudante transite entre os três níveis de conhecimento químico: a observação macroscópica, a interpretação microscópica e a expressão representacional acreditamos no potencial desta proposta didática para contribuir com a aprendizagem dos estudantes levando-os a refletir sobre problemas relacionados ao tema abordado, avaliar possibilidades e tomar decisões de forma crítica e fundamentada cientificamente na escola e na vida.

2 MATERIAIS E MÉTODOS

2.1 TÍTULO DA PROPOSTA DIDÁTICA: OS METAIS E A FABRICAÇÃO DE COMPUTADORES; PRODUÇÃO DE PLACAS DE CIRCUITO IMPRESSO.

A atividade experimental temática sob a abordagem CTSA presentada foi desenvolvido durante a execução do projeto de ensino: Atividades experimentais: a ciência e a tecnologia no

cotidiano; que contou com dois estudantes bolsistas, no decorrer do ano de 2023 com estudantes dos cursos Técnicos Integrados em Administração e Informática do IFPR- câmpus Avançado Barração.

A atividade teve a duração de 3h e foi realizada em uma sala de aula adaptada para a atividade no câmpus, no contraturno dos estudantes, com adesão voluntária.

A presente proposta está fundamentada pela BNCC (2018, p.472):

[...] aprendizagem de processos, práticas e procedimentos científicos e tecnológicos, e promove o domínio de linguagens específicas, o que permite aos estudantes analisar fenômenos e processos, utilizando modelos e fazendo previsões[...]ampliar sua compreensão sobre a vida, o nosso planeta e o universo, bem como sua capacidade de refletir, argumentar, propor soluções e enfrentar desafios pessoais e coletivos, locais e globais;

E estrutura-se sob os Princípios Norteadores das Diretrizes Curriculares Nacionais Gerais para a Educação Profissional e Tecnológica (2021, p.02) tais como:

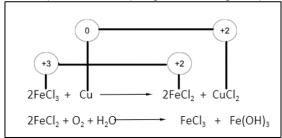
VI - a tecnologia, enquanto expressão das distintas formas de aplicação das bases científicas, como fio condutor dos saberes essenciais para o desempenho de diferentes funções no setor produtivo;

VII - indissociabilidade entre educação e prática social, bem como entre saberes e fazeres no processo de ensino e aprendizagem, considerando-se a historicidade do conhecimento, valorizando os sujeitos do processo e as metodologias ativas e inovadoras de aprendizagem centradas nos estudantes;

Objetivos:

- Produzir uma placa de circuito impresso com a montagem de um circuito simples;
- Compreender da composição química das PCI e suas aplicações;
- Relacionar questões sociais, ambientais e econômicas envolvidas no processo de extração dos metais:
- Reconhecer a importância do descarte correto e da reciclagem de materiais eletroeletrônicos e entender o conceito de mineração urbana e seus impactos socioambientais;
- Compreender com base na mudança de NOX dos átomos das substâncias participantes da reação de corrosão da PCI a ocorrência de uma reação de oxirredução;
- Estimular o trabalho colaborativo, o autocuidado e o cuidado com o outro durante uma atividade experimental;
- Refletir e argumentar acerca do processo de produção da PCI.

2.2 DESENVOLVIMENTO DA PROPOSTA DIDÁTICA


Primeiramente os estudantes foram convidados a refletir sobre as questões: 1- Quais são os eletroeletrônicos que você tem em sua residência? 2- Você sabe do que eles são formados? Após a abordagem dialógica inicial com os estudantes foi proposta a análise de duas imagens – um terreno impactado pela mineração e pessoas catando materiais m um lixão- e a questão 3- Consegue identificar a relação entre as imagens e os equipamentos eletrônicos que você utiliza?

Na sequência, foi realizada uma apresentação sobre alguns metais que compõem uma PCI, abordando suas propriedades e aplicações. Foi apresentado aos estudantes o vídeo "Congo: Preso na Lama | Jornada Mortal" no YouTube, e realizadas reflexões sobre as condições de trabalho nas minas, também, com a apresentação de uma reportagem sobre o acidente na mina de cobre no Chile em 2010 e um breve histórico sobre a mineração no Brasil.

Em seguida destacamos o conceito de mineração urbana e sua importância para a cadeia da reciclagem de metais, em contraponto aos riscos do trabalho de catadores nos lixões. Seguidamente foram expostos os conceitos e sobre a PCI e sua produção a partir da reação entre o cobre da placa com o percloreto de ferro e a reação de reconstituição do percloreto de ferro após agitação da solução, cuja a Figura 1 apresenta.

Figura 1 - Reação de oxirredução que ocorre na produção da PCI

Em seguida, foi entregue o roteiro da prática, mostrando quais equipamentos e reagentes serão usados e os cuidados a serem tomados durante o procedimento experimental.

A solução de percloreto de ferro pode ser reutilizado várias vezes, porém, a cada vez que for reutilizada, a solução vai ficando cada vez mais "fraca", logo, o tempo para corroer o cobre será maior. Não utilize objetos metálicos para mexer a mistura. Para este objetivo, utilize bastões de plástico ou de vidro. A solubilização do sal em água é exotérmica.

2.2.1 Roteiro da prática

Atenção! A solução de percloreto de ferro tem potencial de manchar roupas, portanto, manuseie com cuidado e utilize Equipamentos de Proteção Individual (EPI).

Materiais:
1 placa de fenolite
1 led
papel
Solução de percloreto de ferro
(FeCl3) 0,4g/mL
Placa de petri
1 resistor
Luvas
2 pilhas
Máscara
Barbante, fita adesiva

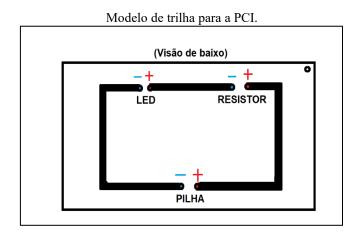
Óculos de segurança
Solda
Furadeira com broca 1 mm
Caneta
Palha de aço com detergente
Béquer com água

Procedimentos:

Passo 1: Colocar os EPI.

Passo 2: Limpar a placa (lado cobreado) com a palha de aço e detergente para remover marcas de digitais e possíveis sujeiras e secar com papel.

Passo 3: Fazer o desenho do circuito na placa com a caneta usando o modelo presente no final do roteiro.


Passo 4: Colocar o barbante na ponta da placa e mergulhá-la na solução de FeCl₃ colocada na placa de petri. Deixar até que o cobre seja corroído (cerca de 15 min).

Passo 5: Lavar as placas no béquer com água e secar. Limpar o desenho de caneta com papel e álcool.

Passo 6: Furar os pontos de conexão dos elementos do circuito.

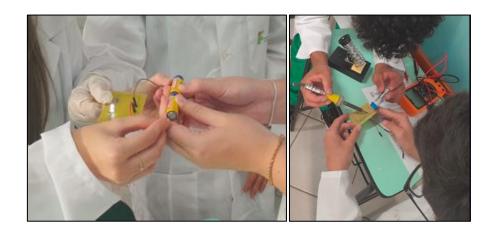
Passo 7: Montar os componentes segundo a representação e soldá-los

Passo 8: Conectar as pilhas segundo o modelo (unir as pilhas com uma fita).

Após a prática experimental, os estudantes foram indagados pelos monitores (estudantes bolsistas do projeto) acerca da importância da reação de corrosão (oxirredução) da placa para seu bom funcionamento, e foi conduzida a reflexão sobre a propriedade dos metais de conduzir corrente elétrica.

3 RESULTADOS

Foi observado que os estudantes se sentiram envolvidos pelos questionamentos iniciais (Quais são os eletroeletrônicos que você tem em sua residência? Você sabe do que eles são formados? Consegue identificar a relação entre as imagens e os equipamentos eletrônicos que você utiliza?), e não souberam relacionar a imagem da mina com os equipamentos eletrônicos, relacionando apenas a imagem do lixão com o consumismo e a rápida evolução da tecnologia e descartabilidade dos produtos eletrônicos, revelando mais um caminho a ser trilhado a partir desta proposta didática, envolvendo consumismo, obsolescência planejada, propaganda e marketing, superlotação de aterros sanitários entre outros. Assim, as reflexões foram orientadas para a questão da extração de matérias primas e seus impactos socioambientais e a reciclagem como forma geração de renda e diminuição de impactos ambientais e sociais na mineração.


A participação dos estudantes na discussão sobre a importância da reação de corrosão (oxirredução) da placa para seu bom funcionamento demonstrou compreensão do processo ocorrido e sua importância da condução de corrente elétrica e o funcionamento da placa.

Portanto, o direcionamento de questionamentos em uma atividade prática instiga a argumentação, e a investigação, além da observação e relato puramente empírico e é fundamental para compreensão da relação teórico-prática dentro do contexto social dos estudantes. Ou seja, a experimentação permite que a aprendizagem de algo complexo se torne interessante e de mais fácil compreensão por meio da aprendizagem ativa.

A Figura 2 apresenta imagens da atividade sendo desenvolvida com os estudantes.

A abordagem CTSA nas atividades escolares é fortalecida quando trabalhada juntamente a atividades em que os estudantes participem e exercitem a argumentação e o pensamento crítico pois permite aos estudantes desenvolverem habilidades para a tomada de decisão frente a questões do cotidiano envolvendo ciência e tecnologia. Assim, o ensino de química sob a abordagem CTSA aliada a experimentação desenvolvida de forma dialógica subsidiam a construção e a conexão entre conhecimento canônico e questões sociais, ambientais e tecnológicas, no contexto social dos estudantes.

4 CONSIDERAÇÕES FINAIS

A contextualização de atividades experimentais a partir da inclusão da vida cotidiana dos estudantes, e de conteúdos CTSA proporcionam uma visão mais ampla dos fenômenos químicos, ressignificando o papel da escola para a sociedade, dando significado às atividades experimentais e aos conteúdos científicos, contribuindo para a aprendizagem de conteúdos científicos e para a formação cidadã dos estudantes.

REFERÊNCIAS

AIKENHEAD, G. S. Educação Científica para todos. Portugal: Edições Pedago, 2009.

ACEVEDO-DÍAZ, J. A. Ciencia, Tecnología y Sociedad (CTS). Un enfoque innovador para la enseñanza de las ciencias. Revista de Educación de la Universidad de Granada, v.10. p. 269-275. 1997

BRASIL. Ministério da Educação. Base Nacional Comum Curricular. Brasília: MEC, 2018.

BRASIL. RESOLUÇÃO Nº 6, DE 20 DE SETEMBRO DE 2012. Define Diretrizes Curriculares Nacionais para a Educação Profissional Técnica de Nível Médio. Brasília, 06 de setembro de 2012. Disponível em:

http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=11663-rceb006-12-pdf&category_slug=setembro-2012-pdf&Itemid=30192. Acesso em 22/02/2023.

SANTOS, W. L. P. Contextualização no ensino de ciências por meio de temas CTS em uma perspectiva crítica. Ciência e Ensino. Vol. 1, novembro de 2007.

SILVA, D. P.; MARCONDES, M. E. R. Oficinas temáticas no ensino público: formação continuada de professores. São Paulo. SE/ CENP, 2011.

RIBEIRO, P. P. M. Concentração de metais contidos em placas de circuito impresso de computadores descartados. Rio de Janeiro. 54 p. Projeto de Graduação — UFRJ/ Escola Politécnica/ Curso de Engenharia Metalúrgica, 2013.

OLIVEIRA R.D.V.L, QUEIROZ G.R.P.C. Conteúdos cordiais: Química humanizada para uma escola sem mordaça. 1ª edição. São Paulo: Livraria da Física, 2017.