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ABSTRACT 

This work aims to explore the various industrial and research initiatives about the application of Artificial 

Intelligence (AI) techniques to autonomous vehicle driving. In particular, it is highlighted in the 

Autonomous Vehicle (AV) study that the transition to an era of data abundance demands a paradigm shift 

from physics-based models to AI-guided methods, capable of predicting future traffic dynamics and 

assisting in the formulation of optimized traffic policies, whose potential lies in factors such as the 

reduction of human errors and the rapid response to accidents in real time,  These factors justify the 

present study. Autonomous driving transcends traditional traffic patterns by performing tasks such as 

proactively recognizing critical events, planning next moves, making decisions, and performing control 

tasks to ensure passenger safety and comfort in dynamic traffic environments. The levels of vehicular 

automation are presented and focuses on AI-guided methods focused on End-to-End structures over 

pipeline structures, exploring details about MLP (Multi-Layer Perceptron) and KAN (Kolmogorov–

Arnold Networks) Neural Network architectures, the main concepts and strategies that guide these 

techniques, as well as future challenges related to AVs. Therefore, it is concluded that technologies such 

as machine learning, deep learning, reinforcement learning, as well as the joint use of these, are essential 

for the implementation of AV control systems that promote the evolution of the transportation system. 

 

Keywords: Machine learning, Reinforcement learning, Deep learning, Artificial Intelligence, Machine 

learning, Autonomous vehicles, Intelligent vehicles. 

 

 

INTRODUCTION 

Numerous industrial and research initiatives have been undertaken to improve vehicle safety, 

prevent accidents, and predict the outcomes of road and vehicle accidents. Among the strategies, the use 

of autonomous vehicles stands out for its potential to prevent human error and respond promptly to 

accidents in real time [1]. Autonomous driving transcends conventional traffic patterns, proactively 

recognizing critical events in advance, ensuring the safety of passengers, and providing them with 

comfortable transportation, especially in highly stochastic and variable traffic environments [2]. 

Technologies based on machine learning, deep learning, and artificial intelligence are vital for self-driving 

cars. The reason why Artificial Intelligence (AI) is rapidly being deployed in a number of industries is that 

it has the ability to learn and solve problems on its own [3]. In self-driving cars, AI applications can be 

deployed in conjunction with advanced technological innovations such as GPS, radar, camera, cloud 

services, and control signals [4]. The transition from an era of data scarcity to a data-rich era (big data) is 
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taking place, and as a result, there is an urgent need for a methodological paradigm shift from physics-

based models to AI-driven methods that can design future traffic dynamics composed of AVs traveling 

alongside human-powered vehicles (VH) and assist in the formulation of socially optimized policies [5]. 

Physics-based models refer to all scientific hypotheses about the movement of cars or traffic flow, while 

AI-guided methods reflect cutting-edge models that mimic human intelligence, including deep neural 

networks, reinforcement learning, imitation learning, and other advanced machine learning methods [5]. 

This work focuses on AI-guided methods and applies a methodology of review of the main points 

surrounding the proposed theme. 

 

OBJECTIVE 

This work aims to explore the various industrial and research initiatives on the application of AI 

techniques to autonomous vehicular driving. The transition to an era of data abundance demands a 

paradigm shift from physics-based models to AI-driven methods capable of predicting future traffic 

dynamics and assisting in the formulation of optimized traffic policies, the potential of which lies in 

factors such as the reduction of human errors and the rapid response to accidents in real time. These 

factors justify the present study.  

 

METHODOLOGY 

In this article we bring a holistic view of the main principles of AI and their applications in the 

context of autonomous vehicles, discussing the international standard of vehicle automation levels and 

focusing on AI methods applied to End-to-End Frameworks guided by machine learning, rather than 

Pipeline frameworks. We also explore details about the architectures of MLP (Multi-Layer Perceptron) 

and KAN (Kolmogorov–Arnold Networks) Neural Networks, the main concepts and strategies that guide 

these techniques, as well as limitations of these architectures. Finally, we list some of the main challenges 

and future perspectives taken from this research, both from the point of view of scientific research and the 

market, among other aspects related to Machine Learning (ML), Deep Learning (DL), Reinforcement 

Learning (RL), as well as the joint use of these in the implementation of AVs. 

 

DEVELOPMENT 

Autonomous driving transcends traditional traffic patterns by performing tasks such as proactively 

recognizing critical events, planning next moves, making decisions, and performing control tasks to 

ensure passenger safety and comfort in dynamic traffic environments. In the following sections, we'll 

delve into the application of AI to autonomous driving. 

 



 
  

 
 

AUTONOMOUS VEHICULAR DRIVING 

Research on Autonomous Driving Systems has been gaining importance in recent decades, 

enormously revolutionizing the automotive industry [6]. AI systems make use of data and algorithms to 

impersonate the cognitive functions of the human brain [3]. AI is making our daily lives more convenient 

and efficient, and is essentially the effort to produce systems with human-like cognitive behavior, such as 

the ability to reason, solve a problem, discover meaning and perceive past experiences, and act coherently 

[4]. There is a growing interest in this field, as the deployment of autonomous vehicles on the roads 

promises safer and greener transport systems [1]. Vehicle control is one of the most critical challenges in 

autonomous vehicles and connected and automated vehicles, and is critical to vehicle safety, passenger 

comfort, transportation efficiency, and energy savings [7]. The problems of conventional automobiles, 

such as lack of road safety, low independence of people with disabilities, high costs, less productivity, 

traffic congestion, long travel time, and environmental pollution can be avoided with autonomous car 

driving through the application of AI [4]. Specific groups of people who are unable to drive, such as the 

elderly, young people or people with disabilities will be able to enjoy the mobility promoted by this 

technology. Another relevant aspect of the application of autonomous driving is that it can also help to 

make driving more efficient, reducing fuel consumption and, consequently, a lower adverse impact on the 

environment [6]. An urban traffic environment consists of traffic entities, including cars, traffic lights, 

pedestrians, cyclists, scooters, and other road users. This multimodal mixed traffic environment further 

complicates the control of autonomous vehicles circulating alongside multiple road users [5]. While 

vehicle automation has already led to great achievements in supporting the driver in a number of 

monotonous and challenging tasks, it is observed that, for example, increasing the level of automation to 

fully automated driving is an extremely challenging problem. This is mainly due to the complexity of real-

world environments, including obstacle avoidance and aspects of human driving behavior [8]. In the era of 

mixed autonomy, when AVs circulate alongside human-driven vehicles [5], according to [9], the primary 

purpose of self-driving cars is to mitigate accidents and human errors, thereby increasing road safety.  

By seeking to reduce the human errors that motivate accidents such as driver inattention, 

distraction or drunkenness, autonomous driving has the potential to save thousands of lives, since 

autonomous vehicles are designed to perform appropriate maneuvers in order to, among others, eliminate 

the risk of accidents [6]. Humans are prone to fatigue, inattention, and drowsiness. Additionally, the use of 

in-vehicle technologies such as smartphones, entertainment systems, and navigation can take away the 

driver's attention and compromise driving safety. Therefore, the costs of road accidents to society are high 

in terms of human injuries and economic losses [1]. As pointed out in [10], approximately 1.19 million 

people died in road crashes in 2023 worldwide. Also according to the World Health Organization (WHO), 

90% of all traffic deaths occur in low- and middle-income countries, such as Latin American nations. 



 
  

 
 

According to the report [11], 392,000 people died in Brazil as a result of traffic accidents between 2010 

and 2019, an increase of 13.5% compared to the previous decade. Corroborating these data, the report [11] 

by the National Road Safety Observatory points out that Brazil ended 2017 with 35,375 deaths, a figure 

that cost the national coffers about 62 billion reais. Also according to this latest report, in total, projections 

estimate that spending on traffic accidents by 2027 would result in an accumulated of 640 billion reais and 

that 90% of accidents occur due to human errors, ranging from inattention to disrespect for traffic 

legislation. Thus, it is observed that research related to AVs is justified by its potential to provide 

alternatives that aim to ensure more comfort and safety to users, in addition to facilitating the locomotion 

of specific groups of individuals and, as presented in this article, AI is a key piece in the context of AV 

control. 

 

CONTEXTUALIZING AUTONOMOUS VEHICULAR DRIVING 

Autonomous driving refers to the ability of a vehicle to circulate partially or fully without human 

intervention [2]. With the emergence of computationally powerful AI techniques, autonomous vehicles 

can detect their environment with high accuracy, make safe decisions in real-time, and operate more 

reliably without human interventions [13]. The AV deployment stage can be divided into four phases of 

different modeling complexity: pure human-driven (VH) vehicles, VH-dominated, AV-dominated, and 

pure AVs, highlighting that the modeling of these phases encompasses game theory, deep learning, and 

imitation learning [5]. Through the joint working group between the Society of Automotive Engineers 

(SAE International) and the International Organization for Standardization (ISO) called SAE/ISO, 

representatives from nine countries work collaboratively on a consistent normative document for use 

across the global mobility community called SAE-J3016 [14] which, as pointed out in [5, 6, 15], defines a 

taxonomy for six levels of automation of driving in the context of motor vehicles and their operation on 

the roads: from Level 0 (without driving automation) to Level 5 (full driving automation). These six levels 

of SAE J3016 vehicle automation have been schematized in [15], as follows: 

a. Level 0: The individual operator is responsible for all operational activities (no automation). 

b. Level 1: The vehicle is controlled by a human driver, but the automation system assists in the 

operation (assistance to drivers). 

c. Level 2: The vehicle uses automated features, but the control and environment of the driving 

process requires human intervention (partially automated driving). 

d. Level 3: The human driver must be ready to take control of the vehicle at any time (automated 

conditional driving). 

e. Level 4: Under some conditions, the automation system can drive the car automatically, but the 

human operator will still be able to control it (high-level driving automation). 



 
  

 
 

f. Level 5: Under all conditions, the automation system can drive the car automatically, but the 

human operator will be able to control it (fully automated driverless cars). 

 

Figure 1 [6] illustrates the levels of vehicle automation according to the SAE J3016 standard. 

 

Fig. 1.  SAE J3016 Vehicle Automation Levels. Translated from [6]. 

 
 

In [1] a distinction is made between passive and active safety systems, citing seat belts and airbags 

as passive safety systems and elucidating the fact that these systems have become standard safety 

equipment for vehicles, but that they are reactive solutions, i.e. those used after an accident has occurred. 

As a result, active safety technologies are becoming a topic of discussion among car manufacturers and 

researchers. According to [15], several researchers and organizations are trying to achieve level 5 

automation, and among those developing research, the main companies: Google, Argo AI, Nvidia, 

Mercedes Benz, Ford, Volvo, Lyft and Aptiv, as well as universities and other research-oriented 

institutions. 

The operational framework for operating autonomous vehicles in dynamic and unpredictable 

traffic scenarios necessitates meticulous orchestration of data collection and processing through a series of 

software-driven layers. This process encompasses wide-ranging tasks: data collection and processing 

through sensors, the perception phase, entailing the recognition and interpretation of prevailing 

environmental circumstances and the execution of control planning [9]. Figure 2 [9] represents the 

Sensing, Perception, Planning, and Control  tasks in the context of autonomous vehicles, illustrating 



 
  

 
 

distinct layers of software that are unique to the AV, a feature that is absent in the domain of conventional 

vehicles. 

 

Fig. 2. Tasks in autonomous vehicles. Translated from [9]. 

 
 

Within the domain of autonomous vehicle systems, different safety paradigms are implemented 

and characterize into distinct categories: the first category belongs to the granular layer of nodes, tools, 

and components within the system. Here, the solutions are independent of communication and the use of 

complex data sets. The second category investigates security considerations in the system and levels of 

communication. It meticulously examines critical factors and formulates solutions within the complexities 

of the network and system, underpinned by existing road safety data [9]. Automation and connectivity are 

two distinct technologies. AVs may or may not have connectivity, while connected vehicles may or may 

not have automation. Connected vehicle refers to vehicle technology that allows users to communicate 

with each other within surface transportation ecosystems [5]. 

Vehicle driving choices contain three levels: operational level (including pedal control and 

braking), tactical level (comprising lane keeping and lane change), and strategic level (including routing). 

Operational and tactical controls can be further categorized into longitudinal control (i.e., car following, 

lane keeping) and lateral control (i.e., lane change), respectively [5, 15]. This work provides a holistic 

view on these three levels of conduction. 

 

ARTIFICIAL INTELLIGENCE APPLIED TO AUTONOMOUS VEHICLES: RELEVANT CONCEPTS 

AND STRATEGIES 

Before continuing the study on AI applied to AVs, it is important to pay attention to two 

frameworks that, according to [2, 16, 17], stand out in the context of autonomous vehicle driving research: 

the modular pipeline framework and the end-to-end framework. The first consists of several submodules, 

each with specific functionality, while the second represents a simplified single-module (modular 

pipeline) approach [2]. In the context of motion planning for autonomous driving, the pipeline planning 

method, also known as the rules-based planning method, is a well-established category of planners [16]. 



 
  

 
 

The modular architecture is widely used in autonomous driving system approaches, which divides the 

driving pipeline into discrete sub-tasks. This architecture relies on individual sensors and algorithms to 

process data and generate control outputs, encompassing interconnected modules including perception, 

planning, and control, but which, however, has certain drawbacks that prevent further advances in 

autonomous driving [2, 17]. Modular pipelines often involve redundancy of calculations, as each module 

is trained for task-specific outcomes, and a significant limitation of pipeline architecture is its 

susceptibility to error propagation from one module to a subsequent one, which can lead to unsafe 

behaviors. The complexity of managing the interconnected modules and the computational inference of 

data processing at each step pose additional challenges [2]. A significant advantage of the pipeline 

structure is its interpretability, allowing for the identification of faulty modules when malfunctions or 

unexpected system behavior occur. Although widely used in industry, the pipeline planning method 

requires substantial computational resources and numerous heuristic functions [16]. The Modular 

Pipelines approach involves sophisticated rules-based designs, which are often ineffective in dealing with 

the large number of situations that occur on the road, and therefore there is a growing trend to harness 

large-scale data and use learning-based planning as a viable alternative [17], referring to the End-to-End 

approach.  

The End-to-End approach has a simplified architecture, which consists of one or a few networks 

and also offers superior robustness and real-time capabilities compared to the pipeline structure [16]. 

Compared to modular pipelines, End-to-End frameworks benefit from joint optimization of resources for 

insight and planning [17]. This approach is a promising paradigm as it circumvents the disadvantages 

associated with modular systems, such as their enormous complexity and propensity to propagate errors 

and aims to overcome the limitations of modular architecture, so as to simplify the system, improving 

efficiency and robustness, by directly mapping the sensory input to control the outputs, so as to optimize 

the conduction pipeline [2]. The autonomous driving community has witnessed rapid growth in 

approaches that adopt an End-to-End algorithm framework, utilizing raw information from sensors to 

generate vehicle motion plans, rather than focusing on individual tasks such as motion detection and 

prediction [17]. In an end-to-end approach, rather than assembling a system based on components that are 

tuned individually, one builds the system and then tunes its performance together [18]. The benefits of 

end-to-end autonomous driving have attracted significant attention in the research community [2]. 

However, [16] points out that as research progresses, End-to-End optimization faces a critical 

interpretability problem. Without intermediate results, tracing the initial cause of an error and explaining 

why the model arrived at specific control commands or trajectories becomes more challenging. The End-

to-End approach simplifies the system, improving efficiency and robustness by directly mapping input 



 
  

 
 

sensory data to control outputs [2]. Figure 3 [16] represents the Modular Pipeline and End-to-End 

approaches. 

 

Fig. 3.  Comparison between the Pipelines structure (a) and the End-to-End structure (b). Translated from [16]. 

 
 

The Pipeline framework for autonomous driving can be summarized as a set of interconnected 

modules, while the End-to-End method treats the whole context as a learnable framework [16]. In addition 

to the End-to-End approach aiming to overcome the limitations of modular architecture, it is a growing 

trend in the research community [2], as the number of articles in the Web of Science database containing 

the keywords "End-to-End" and "Autonomous Driving" illustrated in Figure 4 [2]. 

Self-driving cars are essentially built with artificial intelligence [4]. Overall, it has been shown that 

various AI approaches can provide promising solutions for AVs in recognizing the environment and 

propulsion of the vehicle with proper decision-making [19]. The fundamental pillars of AI that underpin 

the existence of self-driving cars are: Machine Learning, Deep Learning, Internet of Things (IoT), 

Computer Vision, and Cognitive Capabilities [3]. This paper focuses on the first two concepts. 



 
  

 
 

Fig. 4.  Number of articles in the Web of Science database containing the keywords 'End-to-End' and 'Autonomous Driving' 

from 2014 to 2022. Translated from [2]. 

 
 

MACHINE LEARNING 

One of the main tasks of an ML algorithm in a self-driving car is the continuous detection of the 

surrounding environments and the calculation of the possible changes in those environments [3]. All 

machine learning is concerned with extracting information from data and typically requires working with 

large datasets [18]. ML refers to the ability of a machine to understand and learn a specific task and make 

decisions without human intervention and, eventually, improve itself to perform the same task by gaining 

experience without using explicit programming, and machine learning can be divided into two types: 

Supervised Learning (SL) and Unsupervised Learning (Unspervised Learning, US) [3].  

Supervised learning (SL) is summarized in [20] as the act of learning from a set of labeled training 

examples provided by a qualified external supervisor. SL involves the analysis of a dataset and the known 

results [3]. This definition is reinforced by [18] when stating that SL addresses the task of predicting 

labels with input features, where each feature-label pair is called an example. Supervision comes into play 

because for the choice of parameters, supervisors provide the model with a dataset consisting of labeled 

examples, where each example is matched with the fundamental truth label [18]. 

On the other hand, unsupervised learning (US) is used in the case of unclassified and unlabeled 

data [3]. The terms supervised learning and unsupervised learning seem to exhaustively classify machine 

learning paradigms, but they do not, and therefore we consider reinforcement learning (RL) to be a third 

machine learning paradigm, along with supervised learning, unsupervised learning, and perhaps other 

paradigms as well [20]. This work addresses the most relevant ML concepts and paradigms for the field of 

study focused on vehicle autonomy.  



 
  

 
 

SL approaches rely heavily on large amounts of labeled data to be able to generalize and are 

basically trained on each task in isolation, however, obtaining a large amount of data for each individual 

task in autonomous driving is costly and time-consuming, requiring enormous human labor to label this 

data, and even then may not cover all the complex situations of real-world driving [21]. 

 

REINFORCEMENT LEARNING 

Reinforcement Learning (RL) is a field of trial-and-error learning that has been successfully 

applied in end-to-end driving when combined with SL [17]. RL is capable of learning by trial and error 

and does not require explicit human labeling or oversight on each data sample, instead needing a well-

defined reward function to receive reward signals in its learning process [21]. The purpose of RL is 

expressed as reward functions, and many algorithms require them to be dense and provide feedback at 

each step of the environment [17]. The reward is required in almost all reinforcement learning algorithms 

and estimates how well the agent performs an action in a given state (or what the good or bad things are 

for the agent) [22]. 

Performing RL in real-world AVs is a challenging task [16]. RL algorithms learn by sensing the 

environment directly and do not have access to the transition dynamics (i.e., prior knowledge) of the 

explored environment [13]. In the RL framework, an agent interacts with the environment in a sequence of 

actions (selected following a specific policy), observations, and rewards [8]. RL algorithms aim to learn a 

policy, which is a map from states to actions, based on the response received from interaction with the 

environment [23]. RL methods are used for maintenance and control of various aspects of connected 

autonomous vehicles, such as setting specific angular positions for driving [15]. At each time step t, the 

agent (VA) observes the state of the st ∈ S environment and, based on a specific policy, selects an action 

at at ∈ A, where S is the state space and A = {1,..., K} is the set of available actions. Then, the agent 

observes the new state of the environment, st + 1, which is the consequence of applying the action at to the 

state st, and a scalar reward signal rt, which is a quality measure of how good it is to select the action at in 

state st [8]. RL is different from supervised learning, the type of learning studied in most current research 

in the field of machine learning, as well as being different from unsupervised learning, which is typically 

about finding hidden structures in collections of unlabeled data, i.e., even if it is not based on examples of 

correct behaviors.  RL tries to maximize a reward signal rather than trying to find a hidden structure [20]. 

 

DEEP LEARNING 

Deep Learning (DL) is a solution to more intuitive and complex problems that cannot be easily 

solved using classical methods [3]. AI approaches, predominantly in terms of deep learning algorithms, 

have brought considerable improvements to many key components (perception, object detection, 



 
  

 
 

planning) of autonomous driving technology [13]. DL is profound exactly in the sense that its models 

learn from many layers of transformations, where each layer provides representation at one level [18], i.e., 

models are trained using multiple layers of input data [15]. 

The advent of deep learning (DL) has enabled many studies to address different challenging issues 

in AVs, e.g., accurately recognizing and locating obstacles on roads, making appropriate decisions (e.g., 

controlling the steering wheel, acceleration/deceleration), etc [19]. Preferred DL models used in self-

driving car technology include End-To-End Learning, Convolutional Neural Network (CNN), Deep 

Convolutional Neural Network (Deep CNN), Fully Convolutional Networks (FCN), Deep Neural Network 

(DNN), Deep Reinforcement Learning (Deep Boltzmann Machine (DBM), Belief Networks, and Deep 

Autoencoders [3]. Among the applications of DL in the context of AVs, it can be mentioned according to 

[15] that DL allows AVs to perceive a stop signal or differentiate a user from an electric pole. As per [1], 

some studies have used autonomous implementations of deep learning for banner detection problems, 

while some research focuses on merging deep learning with other machine learning techniques and 

classical methodologies. 

The simplest deep networks are called multilayer perceptrons, and they consist of several layers of 

neurons each fully connected to those in the layer below (from which they receive contributions) and 

those above (which they, in turn, influence). This architecture is commonly referred to as a multi-layer 

perceptron, often abbreviated as MLP (Multi-Layer Perceptron) [18]. Utilizing the backpropagation 

algorithm for training, they can be used for a wide range of applications, from functional approximation to 

prediction in diverse fields [24]. MLP adds one or several fully connected hidden layers between the 

output and input layers, and transforms the output of the hidden layer via an activation function [18]. 

The multilayer perceptron is the most well-known and most frequently used type of neural 

network. Most of the time, signals are transmitted within the network in one direction: from input to 

output. There is no loop, the output of each neuron does not affect the neuron itself. Multilayer 

perceptrons (MLPs), also known as fully connected feedforward neural networks [24], are the 

fundamental building blocks of current deep learning models [25]. Figure 5 [18] depicts an MLP Network 

as well as its input, output, and hidden layer layers. 

The cost of parameterization of MLPs with fully connected layers can be prohibitively high, which 

can motivate trade-off between parameter saving and model effectiveness, even without changing the 

input or output size [18]. In this sense, a network architecture called KAN (Kolmogorov–Arnold 

Networks) with a promising approach is proposed in [25], as compared to MLP networks and KAN 

networks presented in Figure 6 [25]. 

The KAN Network presents itself as a new neural network architecture designed to potentially 

replace traditional multilayer perceptrons [26]. Like MLPs, KANs have fully connected structures. 



 
  

 
 

However, while MLPs place fixed activation functions on nodes ("neurons"), KANs place activation 

functions that can be learned at the edges ("weights"). As a result, KANs have no linear weight matrix: 

instead, each weight parameter is replaced by a learning matrix [25]. Unlike MLPs, which are inspired by 

the universal approximation theorem, KANs take advantage of this representation theorem to generate a 

different architecture [26]. 

 

Fig. 5.  Representation of an MLP Network in the form of a diagram. Translated from [18]. 

 
 

Fig. 6.  Representation of models according to MLP (a) and KAN (b) networks. Adapted from [25]. 

 
 

DEEP REINFORCEMENT LEARNING 

The use of deep algorithms in conjunction with other techniques has shown promising results [1], 

such as Deep Reinforcement Learning (DRL), where deep learning is applied to reinforcement learning 

problems [18]. The combination of DL techniques and RL algorithms has demonstrated its potential to 



 
  

 
 

solve some of the most challenging tasks of autonomous driving [27]. The main goal of LR is to 

statistically maximize long-term reward [28]. DRL can be defined as a combination of DL and RL [3, 27, 

28], emerging as a potential solution to the limitations of modern AV trajectory tracking control 

algorithms [7] and, as pointed out by [18], its application has become popular DRL further enhances 

reinforcement learning using deep learning and multilayer neural networks [15]. 

Early decision-making strategies were rule-based, but they were not adequate to cover all 

scenarios, and as deep learning technology reaches maturity, DRL, which exhibits great representativeness 

and optimization capabilities, holds promise for the development of decision-making strategies for 

automated vehicles [29]. By implementing a deep reinforcement learning algorithm, VAs learn an optimal 

control policy by interacting with the environment and utilizing the data collected [7]. It can be difficult 

for the algorithm to learn from all the states and determine the reward path. In this sense, DRL-based 

algorithms replace tabular methods of estimating state values (all possible state and value pairs must be 

stored) with an approximation function that allows the VA to generalize the value of states it has never 

seen before, or has partially seen, using the values of similar states [27]. Comprehensive use of in-depth 

separable convolution along with transformer in DRL-based architectures for lane change decision 

inference can yield an optimal policy [30]. 

Generally, in the DRL framework, the agent is able to drive in an uncertain environment by 

selecting a sequence of actions over several continuous time steps. Subsequently, it will grant rewards 

based on the feedback of the interaction with the environment. Finally, a strategy with maximum 

cumulative reward will be chosen [30]. DRL algorithms include: Deep Q-learning Network (DQN), 

Double-DQN, Actor-Critical (A2C, A3C), Deep Deterministic Policy Gradient (DDPG), and DDPG with 

Double Delay (TD3) [27]. 

 

RELEVANT MACHINE LEARNING ALGORITHMS, THEORETICAL APPROACHES, AND 

STRATEGIES 

AVs have emerged as a promising technology for improving road safety and mobility. However, 

designing AVs involves several critical aspects, such as software and system requirements, which must be 

carefully addressed [9]. AI can completely replace humans with automation with better safety and 

intelligent vehicle movement, so intelligent software and tools are necessary for the efficient design and 

development of AVs [15]. Software and system requirements are among the aspects that require 

consideration when creating vehicles. Although these aspects are of minimal importance in traditional 

vehicles, self-driving cars can potentially cause damage, accidents and compromise safety [9]. The 

Autonomous Driving System involves many subsystems that need to be integrated as a larger system. 

Some of the tasks include motion planning, vehicle location, pedestrian detection, traffic sign detection, 



 
  

 
 

road markings detection, automated parking, vehicle cybersecurity, and system fault diagnosis [6]. Recent 

years have witnessed the emergence of approaches and solutions that use data sensors to collect real-time 

information from the surroundings [9]. These systems anticipate events, predict accidents, and assess 

environmental conditions, thus enabling automated decision-making at various levels of autonomous 

driving. 

AI is a critical technology for the efficient functionality of autonomous vehicles, which use it in 

conjunction with sensory technologies and minimize risk. In the field of object detection, computer vision, 

and semantic segmentation, deep learning has been very effective [15]. In traditional software, operational 

logic is written manually and then tested in a series of test cases, while in the case of DNN-based 

software, the software learns and adapts to certain situations with the help of large data sets [3]. The 

accuracy rate of AI approaches, such as DNN, reached the value of 99.46% and surpassed human 

recognition in some tests [19]. Advanced Neural Networks are used to predict the malfunction of sensors, 

such as prediction, identification, and isolation of faulty sensors [4]. The DL approach has become more 

popular than ML due to its effective performance in both classification and detection, using image frames 

as input to the network algorithm [1]. 63% of the studies reviewed use various AI methods, with LD being 

the most prevalent (34%) [9]. 

RL algorithms in the control context have been mainly used to solve the optimal regulation and 

tracking of single-agent and multi-agent systems [23]. Automatic decision-making approaches, such as 

RL, have been applied to control vehicle speed, among other tasks in the context of AVs [22]. Most real-

world dynamical systems, including unmanned vehicles, are inherently nonlinear. Finding the optimal 

solution for nonlinear systems requires solving a nonlinear partial differential equation, namely the 

Hamilton-Jacobi-Bellman (HJB) equation. Explicitly solving the HJB equation is usually very difficult or 

even impossible. Reinforcement learning is one of the most commonly used techniques to approximate the 

HJB solution, and is therefore widely used in unmanned vehicle systems [23]. 

 

PERCEPTION, MOVEMENT PLANNING, DECISION MAKING AND CONTROL 

Four significant modules are contained in autonomous vehicles: perception, decision-making, 

planning, and control [31]. It is essential that the vehicle recognises its own circumstances and adapts to 

them in order to be able to drive automatically [22]. The trajectory generation module leverages 

perception information to calculate a set of future trajectories [16]. Perception is thought of as an AV 

action that uses sensors to continuously scan and monitor the environment, similar to human vision and 

other senses [19], indicating that autonomous vehicles know information about driving environments 

based on that of a variety of sensors, such as Radar, LiDAR (Light Detection and Ranging), and Global 

Positioning System, GPS) [31]. In the case of current algorithms, the processes of perception and planning 



 
  

 
 

are combined for behavior-conscious planning, many of which rely on machine learning [6]. Planning 

methods are responsible for calculating a sequence of trajectory points for the VA's low-level controller to 

track, typically consisting of three functions: global route planning, local behavior planning, and local 

trajectory planning [16]. 

DRL algorithms have been widely employed as independent motion planning or control modules 

for autonomous vehicles [21]. In the area of movement planning, the final rewards of the episode are 

calculated from the fulfillment or failure of the directing task [28]. The goal of planning for trajectory 

questions is usually to find a possible relationship from the original state to reaching a target state [6]. 

Several approaches to the control layer of an AV have been developed, which are commonly classified 

into classical controller and AI-based controllers. The difference in terms of applicability between these 

controllers is that while purely conventional control techniques offer deterministic behavior, AI-based 

controllers have stochastic behavior due to the fact that they learn from a certain set of features [27]. A 

controller defines the speed, steering angle, and braking actions required at each point of the path obtained 

from a predetermined map, such as Google Maps, or specialized driving record of the same values at each 

reference point. Trajectory tracking, in contrast, involves a temporal model of vehicle dynamics 

visualizing landmarks sequentially over time [32]. 

Trajectory planning is a crucial module in the autonomous driving process. Given a route level 

plan from HD maps or GPS-based maps, this module is required to generate motion-level commands that 

guide the agent [32]. Despite a significant amount of machine learning efforts dedicated to computer 

vision, the intelligence of AVs lies in their optimal decision-making in the movement planning phase [5]. 

The decision-making function that receives the information from the environment and generates high-

level intentions for VA is a crucial component in the elaboration of the driving strategy [29]. Deep 

reinforcement learning has shown great success in the area of vehicle behavioral decision-making, 

especially in highway and intersection scenarios [21]. DRL unites function approximation and target 

optimization by mapping state-action pairs to expected rewards [27]. The decision-making controller 

manages the driving behaviors of vehicles and these behaviors include accelerating, braking, changing and 

keeping lanes, and so on [31]. 

 

CHALLENGES AND FUTURE DIRECTIONS 

Despite the remarkable contributions of leading experts in the field, Intelligent Vehicles remain 

mostly confined to limited test programs due to concerns about their reliability and safety [16]. AI-

powered self-driving cars face challenges such as social acceptability, road conditions, traffic, weather, 

data privacy, and cybersecurity [4]. AVs will have substantial impacts over time, even if they are still in 

development. Thus, there is a need to study safety precautions before accepting them in real environments 



 
  

 
 

[15]. Ensuring the safety, robustness and adaptability of planning methods become crucial for the 

successful implementation of autonomous driving systems [16]. 

By 2035, driverless vehicles are expected to account for 25% of total car sales, with 15% being 

partially autonomous and 10% fully autonomous, compared to 12.4% in 2025. According to most industry 

experts, North America will become the leading market for autonomous vehicles. The United States will 

be the leader in the autonomous vehicle market [4, 33]. Figure 7 [4, 33] presents a comparison between 

the number of autonomous, partially automated and non-automated vehicles in the years 2025 and 2035. 

Future research may also explore ways to improve feedback mechanisms, allowing users to 

understand the decision-making process and instill confidence in the reliability of end-to-end driving 

systems [2]. Human driving habits affect drivers' decision-making performance and therefore the inclusion 

of human driving habits in the design of autonomous driving systems may improve the acceptance of 

emerging technologies by drivers, and this scenario is a likely target of future research [30]. 

 

Fig. 7. The share of autonomous vehicle sales in the market in 2025 and 2035. Translated from [4:33]. 

 
 

As for the choice of the optimal architecture for deep networks, future research may define which 

ones should be adopted for specific situations. Currently, the biggest bottleneck of KANs lies in their 

slowness in training. KANs are generally slower than MLPs, given the same number of parameters. 

Therefore, the slow training of KANs can be seen more as an engineering problem to be improved in the 

future, rather than a fundamental limitation [25], and this information may give us some clue about future 

research on deep network architectures and their applications. 



 
  

 
 

From a legal point of view, it should be noted that, at the time this article is constructed, the 

Brazilian legislation does not yet have a law that regulates the AVs. Currently, the main legal reference for 

the circulation of autonomous vehicles in Brazil is Bill 1,317/2023, which aims to regulate the use of 

autonomous vehicles throughout the national territory and is still pending in the Chamber of Deputies. In 

addition, Resolution 479/2018 of the National Traffic Council (Contran) defines responsibilities and rules 

regarding the performance of tests with AVs and minimum safety requirements, which can guide and 

facilitate the testing of prototypes of Brazilian AVs. As a consequence, this legal loophole can lead to 

negative deadlocks in VA research and testing. According to [15], it is necessary for legislators to create 

legislation that benefits the country economically and socially, and complements by stating that studies 

examine the potential of AVs to become a "killer app" with dramatic consequences. 

 

FINAL THOUGHTS 

This article presented a literature search on machine learning applied to autonomous vehicular 

driving, reviewing the main points surrounding the topic, providing an overview of the applications of AI 

in AVs, the main challenges, future directions, public perception, current scenario of the AV market, in 

addition to presenting growth projections for the area for the next decade. The main research and industry 

initiatives that permeate the study directed to AVs were pointed out, evidencing the significant advance of 

research related to the theme in recent years. 

The focus on AI-guided methods represents a promising evolution in the quest for a safer and more 

efficient transportation system. In AVs, AI models are integrated with technologies such as GPS, LiDAR, 

Radar, cameras, cloud services and control signals, responsible for understanding the environment in 

which the intelligence agent is inserted, in order to make the best decisions and provide assertive 

responses in real time. Advanced machine learning methods, such as deep learning (DL), reinforcement 

learning (RL), among other techniques, are essential to promote the control of AVs and formulate safer 

and more socially optimized traffic policies, within an evolutionary learning process. 

By understanding the main mechanisms surrounding the topic of AI applied to AVs, it was 

observed that the joint use of DL and RL showed promise in the field of autonomous driving, as well as 

the application of KANs network models to the detriment of MLP networks in certain learning contexts, 

although KANs are generally slower than MLPs with regard to training the models.  given the same 

number of parameters. 

Autonomous driving not only surpasses traditional traffic patterns, but also promotes more safety 

and comfort for passengers in stochastic and highly variable traffic environments, a fact that explains the 

growing increase in research in the area of autonomous vehicle driving, with AI as one of the main objects 



 
  

 
 

of studies in the area. Therefore, continuous research and innovation in this area is essential to address the 

challenges and maximize the benefits of autonomous vehicles in modern society. 
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