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ABSTRACT  

Fibrosis results from the excessive deposition of collagen in organs after chronic inflammation, impairing 

their function. The detection and quantification of collagen are essential for diagnosis and treatment, and 

Picrosirius Red (PSR) staining is a gold standard technique due to its high efficacy. This study aims to 

develop machine learning methods to target collagen in histological images obtained with simple 

microscopy, comparing supervised and unsupervised techniques. 
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INTRODUCTION 

Fibrosis is characterized by the deposition of collagen or connective tissue in an organ after a 

process of chronic inflammation. This phenomenon results in an excessive and abnormal increase in the 

production of the extracellular matrix (ECM), resulting from scarring or reactional processes, causing 

undesirable effects to the body and compromising the function of the affected organs [1,2].  Thus, the 

detection of collagen in histological samples is fundamental in the clinical diagnosis of fibrosis, as in cases 

of hepatic [3,4], pulmonary [5], and renal [6,7] fibrosis. In addition, the quantification of collagen in 

healthy and pathological conditions can help in understanding the mechanisms of some diseases, 

prognosis, and treatment [8]. 

Several staining techniques have been developed to detect and quantify collagen deposition in 

histological sections, with varying degrees of efficacy. Among histochemical methods, traditional 

trichrome stains, such as the methods of Mallory, Masson, and van Gieson, have been shown to 

underestimate collagen content [9, 10]. Alternatively, PicroSirius-Red (PSR) staining was developed by 

introducing a more selective method for detecting collagen fibers. This method exhibits less fading over 
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time compared to van Gieson staining and allows for better visualization through polarized light 

microscopy [11], as collagen fibers become birefringent. In addition, it allows a qualitative analysis of the 

element by differentiating thicker collagen fibers from thinner ones through the different birefringence 

colors ranging from red (thicker fibers) to green (finer fibers). In fact, this method is currently considered 

the gold standard for collagen quantification [12]. 

Obtaining histological images under polarized light (PL) allows segmenting and demarcating 

collagen exclusively using specific software, enabling the quantification of fibrosis [6,9]. However, 

acquiring these images requires more time and more expensive equipment. Therefore, analyzing images 

without polarized light is a faster and more affordable alternative. However, differentiating collagen fibers 

from the rest of the image is a major challenge, as the pixel intensities are very close together and do not 

differ as much as they are under polarized light. In order to mitigate this challenge, in recent decades, 

different computer vision techniques and methodologies have been employed to solve problems of 

classification and segmentation of objects such as this one. 

In this context, several techniques have been employed, including machine learning algorithms, 

neural networks, and deep learning (DL). Among these, DL stands out as one of the most modern, using 

multiple layers of processing to identify patterns and structures in large data sets. This method does not 

require prior processing of the data, as it automatically extracts the attributes or characteristics from the 

raw image. However, studies involving LD require a large volume of training data, which may not be 

feasible for some analyses [13, 14, 15]. Other algorithms, such as the Multilayer Perceptron (MLP), 

follow similar principles to DL, but the attributes are not automatically extracted. However, they do not 

require as high an amount of training data as deep learning [16, 17]. 

Another alternative is unsupervised machine learning algorithms, which do not require prior 

classification of data. This approach is primarily feasible for small, unclassified datasets. Among the 

unsupervised algorithms widely used in the field of classification is K-Means. It is an unsupervised 

clustering algorithm that classifies input data by its characteristics or features. Therefore, it is necessary to 

provide as input of the algorithm some characteristics that characterize the object of interest and the 

method groups the patterns according to their similarity [18,19]. 

Thus, the objective of the present project is the development and standardization of a robust, cost-

effective and easy-to-apply method for quantitative analysis of collagen in histological images stained 

with Picrosirius Red, and obtained under simple light microscopy (brightfield). To this end, two methods 

will be tested, one of supervised learning and  the other of unsupervised learning, seeking to obtain 

reliable and reproducible results, optimizing and reducing the analysis time. 

  



 
  

 
 

OBJECTIVE 

Development and validation of a method for collagen segmentation in histological images stained 

with Picrosirius Red, using supervised (Multilayer Perceptron) and unsupervised (K-Means) machine 

learning algorithms, from photomicrographs obtained by simple microscopy, without the use of polarized 

light, for fibrosis detection. 

 

METHODOLOGY 

OBTAINING HISTOLOGICAL IMAGES 

The histological slides used in this study were obtained from different research centers and 

produced in previous experimental protocols. In total, 120 photomicrographs of kidney, heart and tendon 

tissues were captured, from both mice and rats. The entire protocol for the use of histological slides was 

approved by the Ethics Committee on the Use of Animals (CEUA 6210010316; CEUA 056/2010). The 

tissues were processed following a standard protocol: fixation in 10% buffered formalin; cross-sections of 

approximately 4 μm of the paraffin tissues; and coloring with Picrosirius red. The images were obtained 

at the Physiology Laboratory of the Institute of Science and Technology of UNIFESP, using the ZEN 3.7 

software, an AxioLab 5 microscope and an Axiocam 208 color camera attached (Carl Zeiss Microscopy, 

GmBH). The photos were captured with a 20x lens, without the use of polarized light and also with the 

use of it, in order to obtain gold-standard images. 

The image bank consisted of 60 histological images of  mouse kidneys. Of these, 40 were intended 

exclusively for training the neural network used, while 20 were reserved for testing, both the neural 

network and the K-Means algorithm. Additionally, for the test group, 20 histological images of kidney, 20 

heart images and 20 tendon images of rats were captured. Each test group included 10 high-quality images 

and 10 images containing some type of artifact, either from the preparation of the slide (such as bubbles or 

dirt) or from the image capture itself (such as lack of focus). The objective was to evaluate the versatility 

of algorithms in the segmentation of images under different conditions. 

 

IMAGE PROCESSING 

The processing and analysis of the images were carried out in Python language using the Spyder 

software version 4.1.5, free of charge, on a computer with an Intel Core i7 processor and 16GB of RAM. 

Thus, initially, a separate analysis of the RGB channels of each image was performed in order to verify 

which one favored the demarcation ofcollagen. For the images obtained in the absence of polarized light, 

the G channel presented the best contrast. In the images obtained using polarized light, the R channel 

better demarcated the collagen. Thus, the pixel intensities were normalized between 0 and 1 to standardize 



 
  

 
 

the subsequent calculations and these channels (G - brightfield and R - darkfield) were used in the 

subsequent processing steps.  

For both the supervised and unsupervised algorithms, it was necessary to provide some 

characteristics to distinguish the objects of interest from the other regions of the image. These features 

were found empirically and based on performance tests of the algorithms used. Thus, the features 

extracted or used were: original intensity of each pixel in the G channel; intensity of each pixel in the G 

channel after contrast elongation; image resulting from the correlation between the G channel and a 7x7 

average filter. Each of these attributes was converted into a vector and placed in a column forming the 

input set of the algorithms. 

To obtain the gold standard images, the images obtained using polarized light in the R channel 

were processed using the Otsu Method [20], which performs the binarization automatically by analyzing 

the image histogram. Thestep-by-step process for obtaining the feature space and the formation of the gold 

standard images can be seen below in Figure 1. 

 

Figure 1 – Schematic for obtaining the characteristic space and the gold standard images. 

 
 

IMPLEMENTATION OF THE K-MEANS METHOD 

Before the application of the K-Means algorithm, tests were carried out to determine the ideal 

number of classes for fiber segmentation, obtaining better results with a number of classes equal to five. 

The KMeans function of the sklearn.cluster library was used with the standard parameters to implement 

this step. After classifying each pixel by separating it into classes, the object of interest was segmented. 

 

NEURAL NETWORK IMPLEMENTATION 

The neural network implemented is of the MLP type, built empirically after performance tests. It 

has three connected layers: the first is the input layer with 3 neurons and a 'linear' activation function; the 

second layer has 20 neurons with a 'relu' activation function; and the third layer has 1 neuron with 



 
  

 
 

'sigmoid' activation. The model was compiled using the Adam optimizer, with a learning rate of 0.001, and 

the loss function chosen was 'binary_crossentropy'. 

To compose the training data, we used 40 mouse kidney images, all with their respective gold-

standard (GS) images and dimensions of 1920x1080 pixels. These images were divided into  smaller 

patches, resulting in 320 images (480x540 pixels), as can be seen in Figure 2. After visual analysis, we 

selected 152 images with  a minimally satisfactory collagen ratio to compose the final training database, 

discarding those without marking. The previously mentioned features of interest were then calculated for 

each of these images, and the results were vectorized and allocated in a Data Frame to compose the neural 

network input data. 

For the training and validation of the neural network, we used k-fold cross-validation with k=10, 

since the dataset was not extremely large. In each training iteration, 10% of the data was reserved for 

algorithm testing, while the remaining 90% was used for training. This process ensured that all data was 

used for both training and testing at least once. To evaluate the performance of the network, we calculated 

parameters such as accuracy, sensitivity, specificity, and the AUC of the ROC curve. The average of these 

values was calculated after the 10 iterations, and then the data and network weights were saved to be used 

in the classification of each of the test sets. 

 
Figure 2 – Steps involved in training and testing MLP and the K-Means algorithm. 

 
 

 

EVALUATION OF THE METHOD 

To evaluate the performance of the algorithms, they were applied to the test data and parameters 

such as accuracy, sensitivity, specificity, and the AUC of the ROC curve were calculated. In addition, 

before capturing all the test and training images from the study, we applied a questionnaire to four experts 

in the field of histology to evaluate and validate the training data. We presented 10 mouse kidney images 

to the specialists and they answered the standardized questionnaire on the quality of the images, both in 



 
  

 
 

bright and dark fields. Through this instrument (questionnaire) data were collected on the correspondence 

between the gold standards produced and the collagen fibers observed in bright field, and on the 

evaluation of the result of the segmentation produced by a preliminary neural network. Based on the 

answers obtained, we proceeded with the collection of the other images, using the laboratory parameters 

indicated by the experts, making the necessary adjustments to meet them. 

 

DEVELOPMENT 

After separating the RGB channels in each of the images, both in brightfield and with polarized 

light, and creating the feature space and the gold-standard images, we used the training dataset composed 

of 152 mouse kidney images to train and validate the implemented MLP. For this process, we applied K-

fold cross-validation with 10 iterations, where 10% of the data was used for validation and 90% for 

training in each iteration. After the 10 iterations, we calculated the averages of the parameters evaluated in 

each step, as shown in Table 1. 

 
Table 1 - Results of the parameters evaluated with k-fold validation for MLP in the training data of mouse kidney images. 

 
 

Analyzing the performance of the neural network, tested through cross-validation, we observed 

that it presented satisfactory results in the training images. The neural network demonstrated a high level 

of detection of collagen fibers and a good differentiation of non-collagen elements, evidenced by the high 

specificity of the method. Another positive point is the AUC (Area Under the Curve) of the ROC 

(Receiver Operating Characteristic) curve. The ROC curve is a graph that shows the relationship between 

the true positive rate (PV) and the false positive rate (FP) at different classification thresholds. The AUC 

is the total area under the ROC curve. It ranges from 0 to 1 and is an aggregate measure of the model's 

performance across all possible rating thresholds. The closer to 1, the better the classifier, that is, the better 

the correct classification of positive and negative examples.  

With the neural network parameters saved, we started experiments with the test dataset, both for 

the unsupervised algorithm and for the MLP. Initially, we conducted tests to determine the optimal 

number of grouping classes when using K-Means, obtaining the best results with five classes. With this 

parameter set, we applied both algorithms to the available kidney, heart, and tendon test images. As 

previously reported, the images were separated into two groups: images with good quality or without 

artifacts and images with some negative characteristic that could hinder the classification of the pixels. 

These characteristics consisted of dirt, bubbles, weak colorations, and even lack of focus. Thus, in Figure 



 
  

 
 

3 it is possible to observe the result of collagen segmentation provided by the two machine learning 

methods in the classification of mouse kidney images and the performances related to each of the methods 

in Table 2. 

 

Figure 3 – Results of collagen fiber segmentation by the K-Means method and MLP in mouse kidney slides: a) 

photomicrograph of a histological slide of a mouse kidney in good condition obtained in bright field; b) gold standard image 

referring to collagen segmentation; c) Prediction of (a) by the K-Means method; d) Prediction of (a) by MLP; e) 

photomicrograph of histological slide of mouse kidney with presence of artifact; f) gold standard image; g) Prediction of (e) by 

the K-Means method; d) Prediction of (e) by MLP. 

 

 

It is observed that the Otsu Method segmented the collagen fibers in a satisfactory manner, without 

eliminating any information or adding undue data. Similarly, the results of the K-Means and MLP 

segmentation were largely successful, but some undue pixels were added to the segmentation. Another 

factor to highlight is the difficulty that the algorithms had in separating what was an artifact from what 

was really collagen (Figure 3 - Chart E). 

Regarding the performance of the methods, a noticeable difference was noted between the results 

obtained with good quality images and those of inferior quality. Although the accuracy values were very 

close, the sensitivity parameters and AUC revealed a lower performance of both methods for the lower 

quality images. For good quality images, the MLP method stood out in relation to the K-Means algorithm, 

with a sensitivity of 78.81%. 

 

Table 2 – Performance of MLP and K-Means in the segmentation of collagen fibers in histological images of mouse kidneys. 

 
 

 



 
  

 
 

For rat kidney imaging, MLP performed better on sensitivity and AUC metrics, while K-Means 

stood out on accuracy and specificity metrics. An important point to be highlighted was the better 

performance of the methods on lower quality images compared to higher quality ones. This may have 

been due to the weaker staining in some images, where the collagen does not become sufficiently 

birefringent under polarized light. As a result, the methods target more fibers than those present in the 

gold standard, achieving high levels of sensitivity (Figure 4, Table 3). 

In the heart images of rats in good conditions, both the supervised and unsupervised learning 

methods showed similar performances. However, in the lower quality heart images, the MLP 

demonstrated better performance in the parameters of accuracy and specificity, while the K-Means stood 

out in the other parameters.  

Similarly, there was no significant difference between the performance of the methods when 

comparing the two sets of test images. In fact, the heart images considered to be of lower quality were not 

so different from the good quality images and had fewer artifacts than the other images (kidney and 

tendon) tested in this study. This demonstrates that the methods are robust in situations where the image 

has some slight alteration, unlike images with extensive artifacts as shown in Figure 3 - Chart E. 

 

Figure 4 – Results of collagen fiber segmentation by the K-Means method and MLP in rat kidney slides: a) photomicrograph of 

histological slide of rat kidney in good condition obtained in bright field; b) gold standard image referring to collagen 

segmentation; c) Prediction of (a) by the K-Means method; d) Prediction of (a) by MLP; e) photomicrograph of histological 

slide of rat kidney with weak stain and presence of artifact; f) gold standard image; g) Prediction of (e) by the K-Means 

method; d) Prediction of (e) by MLP. 

 
 

Table 3 – Performance of MLP and K-Means in the segmentation of collagen fibers in histological images of rat kidneys. 

 
 

  



 
  

 
 

Table 4 – Performance of MLP and K-Means in the segmentation of collagen fibers in histological images of rat hearts. 

 
 

 

Figure 5 – Results of collagen fiber segmentation by the K-Means method and MLP in rat heart slides: a) photomicrograph of 

histological slide of rat heart in good condition obtained in bright field; b) gold standard image referring to collagen 

segmentation; c) Prediction of (a) by the K-Means method; d) Prediction of (a) by MLP; e) photomicrograph of a histological 

slide of a rat heart with lack of focus; f) gold standard image; g) Prediction of (e) by the K-Means method; d) Prediction of (e) 

by MLP. 

 

 

The images of the tendon (Figure 6) differ from those shown above (Figures 3, 4 and 5), because 

almost its entire area is occupied by collagen fibers. Like the heart photos, the tendon photos did not have 

as many artifacts. Thus, to compose the group of 'bad' images, images were chosen not because they are of 

low quality, but because they present a greater challenge in their segmentation because they present 

thinner fibers that are stained with a less intense red than thicker fibers, as can be seen in the letter and 

figure below. 

It is possible to observe in Figure 6, the difficulty of the algorithms in recognizing the collagen 

fibers that have a lighter color. In bright field, collagen can present darker shades, standing out from the 

other structures of the image, as well as it can present shades very similar to the other structures, making 

its differentiation and segmentation complex. In the same way, with gold-standard images, it is possible to 

analyze how collagen segmentation is not so trivial, since pixels of very close colors may or may not 

belong to the group of collagen fibers. 

  



 
  

 
 

Figure 6 – Results of collagen fiber segmentation by the K-Means method and MLP in rat tendon slides: a) photomicrograph of 

the histological slide of a rat tendon in good condition obtained in a bright field; b) gold standard image referring to collagen 

segmentation; c) Prediction of (a) by the K-Means method; d) Prediction of (a) by MLP; e) photomicrograph of a histological 

slide of a rat tendon with collagen that is difficult to identify; f) gold standard image; g) Prediction of (e) by the K-Means 

method; d) Prediction of (e) by MLP. 

 

  

Regarding the evaluation of the methods, the MLP showed a better performance than the K-Means 

method in tendon images, especially in the sensitivity parameter, as shown in Table 5. Note that the 

accuracy parameters were lower in this experimental group, as well as the specificity of the method. 

Specificity is the ability of the method to classify negative pixels as non-collagen. Therefore, the methods 

showed a high false positive rate. Even with these complications, MLP proved to be a more robust method 

than K-Means in this test group.  

 

Table 5 – Performance of MLP and K-Means in the segmentation of collagen fibers in histological images of rat tendons. 

 
 

Thus, through the results obtained, it was noted that the methods presented have an easier time 

segmenting perivascular collagen than interstitial collagen or finer fibers. This is already a well-known 

topic and addressed in previous research. In [21], an automated method was proposed to quantify renal 

fibrosis using images obtained under polarized light. In this study, perivascular collagen was eliminated so 

that only interstitial collagen could be quantified. The authors state that most of the interstitial fibrotic 

pixels were far from the vessels and had intermediate intensity. For comparison purposes, the results were 

correlated with Masson's semiquantitative trichrome technique, presenting significant differences in 

fibrosis quantification between the methods, especially when the perivascular collagen content is added to 

the stones.  



 
  

 
 

Another point to consider is the construction of gold-standard images for validation of the 

technique. PicroSirius Red dye binds to the tertiary grooves of collagen fibrils and enhances their natural 

birefringence. Under polarized light, it appears bright against a dark background, making it easy to see. 

However, there are studies that pay attention to the importance of standardization in capturing images 

under polarized light. In Street et al. [22] implemented a fluorescence-based method for collagen 

quantification. In the study, images are collected in a standard way, with polarized light, and in an 

alternative way, by fluorescence. The samples are rotated at different angles, but captures are taken from 

the same points in the image. Thus, the authors found differences in both the tonality and intensity of the 

collagen fibers when using linear polarized light, unlike fluorescent light that did not reflect changes in the 

samples even after rotation, which may be a possible alternative for creating gold standard images. In the 

study by Greiner et al. [23], images were collected with linear polarized light. However, the slides are 

rotated at 6 different angles and 6 images have been captured, which are then combined to form the final 

image.  

In the present study, the gold-standard images were captured with a circular polarizer, which, 

according to the literature, is more suitable than the linear polarizer for the reason mentioned above. 

However, it was noticeable that in many images, the grading methods demarcated more pixels than those 

present in the gold-standard images. This indicates the need for further acquisition tests of the gold 

standard images to ensure that this validation method is adequate. 

In addition to the points mentioned above, it is interesting to mention that the use of more modern 

techniques for segmentation and classification of images such as convolutional neural networks (CNN) 

has been growing. Fu et al. [24] propose a method for identifying fibrosis in images stained with Masson's 

trichcomic staining, where the performance of the proposed neural network was higher than the 

conventional U-Net network. In addition, Pham et al. [25] present the use of deep CNN for analysis of 

scar fibrosis in histopathological images of tissues stained with hematoxylin and eosin.  

Thus, the methods proposed in this study showed satisfactory and promising performances, 

pointing to the need for improvements in the parameters evaluated and CNNs may be an alternative, 

despite requiring an extensive training database.  

 

FINAL CONSIDERATIONS 

It is concluded that the methodology proposed in this study presents satisfactory results for 

collagen segmentation, especially perivascular. New methods based on machine learning algorithms  such 

as those presented can facilitate, cheapen, and improve the identification and quantification of collagen in 

healthy and pathological tissues, aiding in the diagnosis and prognosis of various diseases associated with 



 
  

 
 

fibrosis. In this study, the MLP-type algorithm proved to be more robust than the K-Means algorithm, 

especially in the database of test images with lower quality. 

Another point to highlight is the need for an adequate methodology for the construction of gold-

standard images. This protocol involves several challenging steps , involving adjustments that must be 

standardized in the collection of images under polarized light to ensure a more robust method of 

validation, such as the acquisition of images from several different angles and subsequent overlapping of 

the captured images.   

In addition, it was possible to perceive, especially in the tendon images, that there are some 

challenges regarding the segmentation of thinner or less compressed collagen fibers, because the pixels 

that compose them have characteristics similar to those of other elements of the image. Therefore, it 

would be necessary to explore other characteristics to better characterize collagen or apply more modern 

techniques that automatically recognize patterns, requiring a significant image database. 

  



 
  

 
 

REFERENCES 

 

Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology: A Journal 

of the Pathological Society of Great Britain and Ireland, 214(2), 199-210. 

 

Thannickal, Victor J., et al. (2014). Fibrosis: ultimate and proximate causes. The Journal of Clinical 

Investigation, 124(11), 4673-4677. 

 

Arjmand, Alexandros, et al. (2020). Quantification of liver fibrosis - A comparative study. Applied 

Sciences, 10(2), 447. 

 

Cantiga-Silva, C., et al. (2021). Inflammatory profile of apical periodontitis associated with liver fibrosis 

in rats: Histological and immunohistochemical analysis. International Endodontic Journal, 54(8), 

1353-1361. 

 

Testa, Lauren C., et al. (2021). Automated digital quantification of pulmonary fibrosis in human 

histopathology specimens. Frontiers in Medicine, 8, 607720. 

 

Morais, G. B., et al. (2017). Polarization microscopy as a tool for quantitative evaluation of collagen using 

picrosirius red in different stages of CKD in cats. Microscopy Research and Technique, 80(5), 543-

550. 

 

Bhuiyan, Sadman, et al. (2021). Assessment of renal fibrosis and anti-fibrotic agents using a novel 

diagnostic and stain-free second-harmonic generation platform. The FASEB Journal, 35(5), 

e21595. 

 

Rosenbloom, Joel, et al. (2017). Human fibrotic diseases: Current challenges in fibrosis research. In 

Fibrosis: Methods and Protocols, 1-23. 

 

Rich, Lillian; Whittaker, Peter. (2017). Collagen and picrosirius red staining: A polarized light assessment 

of fibrillar hue and spatial distribution. Journal of Morphological Sciences, 22(2), 0-0. 

 

Segnani, Cristina, et al. (2015). Histochemical detection of collagen fibers by Sirius red/fast green is more 

sensitive than Van Gieson or Sirius red alone in normal and inflamed rat colon. PLOS ONE, 

10(12), e0144630. 

 

Junqueira, L. Cx U., Bignolas, G., Brentani, Ricardo R. (1979). Picrosirius staining plus polarization 

microscopy, a specific method for collagen detection in tissue sections. The Histochemical Journal, 

11, 447-455. 

 

Lattouf, Raed, et al. (2014). Picrosirius red staining: A useful tool to appraise collagen networks in normal 

and pathological tissues. Journal of Histochemistry & Cytochemistry, 62(10), 751-758. 

 

Janiesch, Christian; Zschech, Patrick; Heinrich, Kai. (2021). Machine learning and deep learning. 

Electronic Markets, 31(3), 685-695. 

 

Wang, Jue, et al. (2022). Scaffolding protein functional sites using deep learning. Science, 377(6604), 

387-394. 

 



 
  

 
 

Woessner, Alan E.; Quinn, Kyle P. (2022). Improved segmentation of collagen second harmonic 

generation images with a deep learning convolutional neural network. Journal of Biophotonics, 

15(12), e202200191. 

 

Desai, Meha; Shah, Manan. (2021). An anatomization on breast cancer detection and diagnosis employing 

multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clinical 

eHealth, 4, 1-11. 

 

Yang, Fen; Moayedi, Hossein; Mosavi, Amir. (2021). Predicting the degree of dissolved oxygen using 

three types of multi-layer perceptron-based artificial neural networks. Sustainability, 13(17), 9898. 

 

Ahmed, Mohiuddin; Seraj, Raihan; Islam, Syed Mohammed Shamsul. (2020). The k-means algorithm: A 

comprehensive survey and performance evaluation. Electronics, 9(8), 1295. 

 

Yuan, Chunhui; Yang, Haitao. (2019). Research on K-value selection method of K-means clustering 

algorithm. J, 2(2), 226-235. 

 

Otsu, Nobuyuki, et al. (1975). A threshold selection method from gray-level histograms. Automatica, 

11(285-296), 23-27. 

 

Street, Jonathan M., et al. (2014). Automated quantification of renal fibrosis with Sirius Red and 

polarization contrast microscopy. Physiological Reports, 2(7), e12088. 

 

Wegner, Kyle A., et al. (2017). Fluorescence of picrosirius red multiplexed with immunohistochemistry 

for the quantitative assessment of collagen in tissue sections. Journal of Histochemistry & 

Cytochemistry, 65(8), 479-490. 

 

Greiner, Cherry, et al. (2021). Robust quantitative assessment of collagen fibers with picrosirius red stain 

and linearly polarized light as demonstrated on atherosclerotic plaque samples. PLOS ONE, 16(3), 

e0248068. 

 

Fu, Xiaohang, et al. (2018). Segmentation of histological images and fibrosis identification with a 

convolutional neural network. Computers in Biology and Medicine, 98, 147-158. 

 

Pham, Thi Tram Anh, et al. (2022). Universal convolutional neural network for histology-independent 

analysis of collagen fiber organization in scar tissue. IEEE Access, 10, 34379-34392. 

 

 

 

 

 

 

 

 

 
The present work was carried out with the support of the Coordination for the Improvement of Higher Education Personnel - 

Brazil (CAPES) - Financing Code 001. 


