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RESUMO

A previsdo precisa das poténcias ativas (P) e reativas (Q) em redes elétricas ¢ fundamental para aprimorar
a confiabilidade operacional e o planejamento nos sistemas de poténcia modernos. Este artigo propde um
modelo de previsdo baseado em redes neurais do tipo Long Short-Term Memory (LSTM) para estimar a
demanda de carga em um sistema IEEE de 30 barras. O modelo considera como variaveis de entrada as
poténcias ativas e reativas fornecidas pelos geradores, enquanto os componentes de poténcia das cargas sao
utilizados como variaveis-alvo de previsdo. Para aprimorar o desempenho, foi empregado um Algoritmo
Genético (GA) na otimizagao de hiperpardmetros, o que reduziu o Erro Absoluto Médio (MAE) e aumentou
a precisdo das previsdes. Os resultados demonstram que a abordagem proposta fornece previsdes estaveis
do comportamento das cargas, evidenciando seu potencial de aplicagdo em smart grids e em sistemas de
gerenciamento de microrredes.

Palavras-chave: Previsao de Fluxo de Poténcia. LSTM. Algoritmo Genético. Poténcia Ativa. Poténcia
Reativa. Smart Grids.

1 INTRODUCAO

As crescente complexidade dos sistemas elétricos modernos, impulsionada pelo aumento da
demanda e pela integracao de fontes de energia renovavel, intensificou a necessidade do uso de ferramentas
computacionais avangadas para previsao de carga e analise do sistema. A estimativa precisa das poténcias
ativa (P) e reativa (Q) ¢ essencial para garantir a operagao confiavel, a estabilidade do sistema e a eficiéncia
no planejamento energético.

As abordagens tradicionais de previsdo, baseadas em métodos estatisticos ou lineares, apresentam
limitagdes ao lidar com a natureza altamente nao linear e dinamica dos sistemas de poténcia. Nesse contexto,
as Redes Neurais Recorrentes (RNNs), em especial as arquiteturas Long Short-Term Memory (LSTM), tém
se destacado como alternativas eficazes devido a sua capacidade de capturar dependéncias temporais de
longo prazo em dados historicos.

Neste trabalho, propde-se o uso de uma rede LSTM para prever os componentes ativo e reativo de

uma carga selecionada no sistema-teste IEEE de 30 barras, considerando como varidveis de entrada as
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poténcias ativa e reativa fornecidas pelos geradores. Para melhorar ainda mais o desempenho do modelo,
empregou-se um Algoritmo Genético (GA) para otimizacdo dos hiperparametros da LSTM, possibilitando
resultados mais consistentes com menores valores de Erro Absoluto Médio (MAE). A Figura 1 apresenta a
representacdo esquematica do sistema IEEE de 30 barras utilizado como referéncia experimental. Esse
sistema de teste ¢ amplamente adotado na literatura como referéncia para a avaliagdo de metodologias de

previsao e otimizacdo em redes de energia elétrica.

Figura 1: Representagdo esquematica do sistema IEEE de 30

Fonte: Researchgate

A Figura 2 ilustra a arquitetura geral da rede LSTM proposta, destacando a sequéncia temporal das
entradas (poténcias ativas e reativas dos geradores) e as saidas correspondentes as previsdes das poténcias

ativa (P) e reativa (Q) da carga selecionada.
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Figura 2: Diagram of the LSTM architecture.
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Fonte: Researchgate

Por fim, a Figura 3 apresenta o fluxo do processo de otimizagao conduzido pelo Algoritmo Genético.
O GA atua sobre os hiperpardmetros da LSTM (numero de neurdnios, taxa de aprendizado, nimero de

camadas, entre outros), avaliando o desempenho com base no menor MAE obtido durante a validagao.

Figura 3: fluxo do processo de otimizagdo conduzido pelo Algoritmo Genético
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Fonte: O autor

Neste cenario, o presente artigo propde o desenvolvimento de um algoritmo baseado em redes

neurais recorrentes (RNN) com unidades LSTM para a previsdo do comportamento de cargas no sistema



IEEE de 30 barras, utilizando dados histéricos de injecdes de poténcia nas barras. As RNNs baseadas em
LSTM se destacam pela capacidade de capturar padrdes temporais complexos em dados sequenciais,
aumentando a precisao das previsdes mesmo em condi¢des operacionais altamente dindmicas. Trabalhos
anteriores demonstraram que previsdes precisas de carga impactam diretamente a eficiéncia da operagao
dos sistemas elétricos, especialmente quando integradas a estruturas de geracdo distribuida, permitindo a
otimizagdo de custos energéticos e o aumento da penetracdo de fontes renovaveis na rede [3].

Para compreender o estado da arte e contextualizar os desafios técnicos envolvidos, realizou-se uma
revisdo de estudos prévios sobre previsao de séries temporais em sistemas elétricos e seus impactos no
planejamento operacional. Em nossa analise, diferentes cenarios de previsao foram testados utilizando dados
reais de fluxo de poténcia combinados com abordagens de aprendizado de maquina. A capacidade de
aprendizado das LSTM mostrou-se altamente eficaz na captura de dependéncias temporais, apresentando
resultados promissores mesmo quando utilizado um conjunto reduzido de varidveis de entrada, como as
poténcias ativa e reativa dos geradores, para prever a demanda ativa e reativa de cargas individuais. As
previsdes foram atualizadas a cada 10 instantes de tempo, simulando um horizonte operacional realista.

No contexto das aplica¢des industriais e comerciais, a previsao precisa de carga ndo apenas otimiza
a operacdo de recursos distribuidos, mas também contribui para a estabilidade da rede elétrica em regides
com alta penetragdo de fontes renovaveis. Estudos como [4] destacam o potencial das Redes Neurais
Artificiais na previsdo de perdas em redes de distribui¢do. De forma semelhante, a previsdo de cargas com
LSTM pode atuar como elemento central na reducao de perdas técnicas em sistemas de distribui¢do quando
integrada a estratégias avancadas de gerenciamento de carga e armazenamento de energia. Este trabalho
avanga em relacdo a modelos existentes ao introduzir abordagens inovadoras para lidar com a variabilidade
e a complexidade dos dados de carga. Para isso, foi construido um conjunto de dados robusto, contemplando
diversas condigdes operacionais do sistema IEEE de 30 barras. O conjunto de dados utilizado neste trabalho
foi composto pelas condigdes operacionais de seus geradores e das 21 cargas conectadas. Especificamente,
as variaveis de entrada do modelo corresponderam as poténcias ativa e reativa fornecidas pelos geradores,
enquanto as variaveis de saida poderiam, em principio, ser as poténcias ativa e reativa de cada uma das 21
cargas. Entretanto, para os experimentos conduzidos neste estudo, apenas a carga 2 foi selecionada como
alvo de previsdo. Essa escolha teve como objetivo reduzir a complexidade inicial do problema, permitindo
validar a metodologia em um cenario controlado. Assim, ainda que o banco de dados completo inclua todas
as cargas do sistema, o modelo de previsao foi treinado e avaliado considerando exclusivamente a demanda
ativa e reativa da carga 2. Os dados foram pré-processados € normalizados para o treinamento e validagao

do modelo de previsao.
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Outra novidade apresentada neste trabalho foi o uso de um Algoritmo Genético (GA) para otimizar
os hiperparametros da rede LSTM, aumentando a velocidade de convergéncia e reduzindo o erro médio de
previsao.

Em conclusao, este estudo representa uma contribui¢do significativa para o desenvolvimento de
técnicas preditivas aplicadas a operacgao de sistemas elétricos, com implicagdes diretas para o setor elétrico
e para o planejamento energético sustentavel. Pesquisas futuras podem investigar a inclusdo de variaveis
operacionais adicionais, bem como o impacto de eventos extremos e contingéncias, visando aprimorar ainda

mais os modelos preditivos propostos.

2 MATERIAL E METODO
2.1 FUNDAMENTACAO TEORICA
2.1.1 RNN

As Redes Neurais Recorrentes (RNNs) constituem uma classe de redes neurais artificiais projetadas
especificamente para lidar com dados sequenciais. Diferentemente das redes feedforward tradicionais, as
RNNs incorporam lagos de realimentagdo que permitem que informacdes de instantes anteriores
influenciem a saida atual. Essa caracteristica as torna particularmente adequadas para tarefas de previsao,
nas quais dependéncias temporais e correlagdes desempenham papel fundamental [5].

Entretanto, as RNNs tradicionais frequentemente enfrentam limitagdes, como o desaparecimento
(vanishing) e a explosdo de gradientes (exploding gradients) quando treinadas em sequéncias longas. Esses
problemas reduzem a capacidade da rede de capturar dependéncias de longo prazo, que sdo essenciais para

previsdes precisas em sistemas elétricos.

Figura 4: Redes Neurais Recorrentes (RNN)
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Fonte: O autor.
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Cada célula da camada oculta corresponde a uma unidade Long Short-Term Memory (LSTM),

2.1.1.1 LSTM

ilustrada na Figura 4. Essa ¢ uma variacdo das redes neurais recorrentes projetada para lidar com
dependéncias de longo prazo em sequéncias de dados. Seu principal objetivo € evitar problemas como o
desaparecimento ou a explosao de gradientes, comuns em RNNs tradicionais. Para isso, a LSTM utiliza um
mecanismo estruturado de portas que controlam o fluxo de informagdes ao longo do tempo, permitindo que

a rede decida quais informagdes manter, descartar ou atualizar.

Figura 5: Long Short Term Memory (LSTM)
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Fonte: Researchgate

De forma geral, a célula LSTM mantém dois estados principais: o estado da célula (Ct) e o estado
oculto (ht). O estado da cé€lula ¢ responsavel por armazenar informagdes ao longo do tempo, enquanto o
estado oculto serve como saida a cada instante. Esses estados sdo atualizados dinamicamente por meio de

trés portas principais: porta de esquecimento, porta de entrada e porta de saida.

2.1.1.1.1 Porta de Esquecimento (f):
Determina quais informag¢des do estado anterior (Ct-1) devem ser descartadas. Para isso, aplica-se
uma func¢ado sigmoide, que gera valores entre 0 (descartar) e 1 (manter). Esses valores sdo calculados a partir

da combinag¢do do estado oculto anterior (ht-1) com a entrada atual (xt).

fe = U(Wf * [he_q, xe] + bf) (1)

2.1.1.1.2 Porta de Entrada (i) e Informacio Candidata (C):

Define quais novas informagdes serdo adicionadas ao estado da célula. Primeiramente, uma funcao
sigmoide calcula os coeficientes de atualizagio. Em seguida, gera-se uma informacio candidata (Ct) por
meio da fungdo tangente hiperbolica (tanh), que produz valores entre -1 e 1. Esses dois passos asseguram

que apenas informagdes relevantes sejam incorporadas.
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ip = o(W; * [he—g, xc] + by) (2)
Et = tanh(W, * [he—1, x| + b.) (3)

2.1.1.1.3 Atualizacdo do Estado da Célula (Ct):
O estado atual ¢ atualizado combinando-se o estado anterior com a nova informacao candidata. A
porta de esquecimento regula quanto do estado anterior serd mantido, enquanto a porta de entrada define a

proporcao da informacgao candidata que serd incorporada.

C=fiOC1+i OCY) 4)

Aqui, © representa a multiplicagdo elemento a elemento, garantindo um ajuste dinamico do fluxo

de informagaoes.

2.1.1.1.4 Porta de Saida (0):

Define quais informacgdes do estado atual (Ct) serdo utilizadas para gerar o estado oculto (ht). A
combinag¢do do estado oculto anterior e da entrada atual passa por uma fun¢do sigmoide, que controla a
fracdo liberada. Em seguida, o estado da célula ¢ ativado com a fun¢@o tanh e multiplicado pelos valores da

porta de saida:

o = o(W, * [he_q, x¢] + by) &)

2.1.1.1.5 Calculo do Estado Oculto (ht):
Finalmente, o estado oculto ¢ calculado como o produto elemento a elemento entre a saida da porta

de saida (ot) e a versdo ativada do estado da célula (tanh(Ct)).

hs = o, © tanh(Cy) (6)

2.1.1.2 HeatMap

O HeatMap ¢ uma ferramenta de visualizacdo de dados amplamente utilizada para representar os
valores de uma matriz ou tabela por meio de variagdes de cores. Essa técnica facilita a identificagcdo de
padrdes, tendéncias ou correlacdes entre varidveis em conjuntos de dados complexos. No contexto de séries
temporais e aprendizado de maquina, os HeatMaps sdo frequentemente empregados para explorar relagdes

entre diferentes variaveis ou para analisar o comportamento dos dados ao longo do tempo.



O funcionamento de um HeatMap baseia-se na atribui¢do de cores a valores numéricos, geralmente
seguindo uma escala continua, como gradientes que variam do azul (para valores baixos) ao vermelho (para
valores altos). Cada célula do mapa representa a interse¢do entre duas varidveis, permitindo uma
visualizagdo intuitiva de suas interagdes. Por exemplo, em uma matriz de correlacao, o HeatMap ¢ usado
para exibir a intensidade e a direcdo das relagdes lineares entre pares de variaveis.

Além disso, os HeatMaps sdo tuteis para identificar anomalias ou padrdes sazonais nos dados. Em
aplicagdes praticas, como a previsao de séries temporais, eles podem ser utilizados para analisar a relevancia
das variaveis de entrada, identificar periodos de maior concentragao de valores extremos ou compreender a
influéncia de fatores externos sobre os dados analisados. Os HeatMaps podem ser implementados em
ferramentas como Seaborn ou Matplotlib, que permitem a personalizagao de escalas de cor, rotulos e
anotagdes, ampliando a capacidade de interpretacao dos resultados.

Dessa forma, o uso de HeatMaps proporciona uma abordagem visual poderosa para compreender e
comunicar informag¢des complexas, sendo uma ferramenta essencial em estudos que exigem a analise de
grandes volumes de dados ¢ suas inter-relagdes.

A escolha dos dados de entrada na arquitetura da RNN, ilustrada na Figura 4, foi baseada na andlise
das correlacdes entre as varidveis do sistema. O HeatMap, apresentado na Figura 6, mostra as relagdes de
correlacdo entre diferentes varidveis, possibilitando identificar aquelas com maior impacto no
comportamento do sistema e, portanto, mais relevantes para o modelo.

Assim, as fontes de energia foram escolhidas como variaveis de entrada para o treinamento, € uma

das cargas (neste caso, a Carga 2) foi selecionada como variavel de saida da rede.

Figura 6: HeatMap
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Fonte: O autor

2.1.1.3 TensorFlow e Keras
O TensorFlow e o Keras sdo ferramentas essenciais para o desenvolvimento de modelos de deep
learning, especialmente em tarefas que envolvem séries temporais, como a previsao de variaveis de fluxo

de poténcia em redes elétricas.



O TensorFlow, desenvolvido pelo Google, ¢ uma biblioteca de codigo aberto altamente escalavel e
eficiente, projetada para realizar operagdes matematicas complexas e dar suporte ao treinamento de modelos
em hardwares de alto desempenho, como GPUs e TPUs. O Keras, integrado como a API de alto nivel do
TensorFlow, fornece uma interface modular e de facil utilizacdo para a construcdo de redes neurais,
permitindo que os pesquisadores foquem nos aspectos conceituais e experimentais da modelagem.

No modelo desenvolvido neste trabalho, diversas funcionalidades do TensorFlow e do Keras foram
exploradas pela sua simplicidade e eficiéncia na implementacdo. A arquitetura foi construida utilizando a
classe Sequential, que organiza as camadas de forma linear e ¢ adequada para redes neurais que processam
dados sequenciais, como as LSTMs empregadas neste estudo. As camadas LSTM formaram a espinha dorsal
do modelo, projetadas para capturar padroes temporais e dependéncias de longo prazo nos dados de entrada.
Essa capacidade ¢ fundamental na anélise de séries temporais em sistemas de poténcia, ja que os valores de
carga atuais sdo fortemente influenciados por variagdes passadas das poténcias ativa e reativa.

Para aprimorar o processo de aprendizado, foi adicionada uma camada Bidirectional, que permite a
LSTM analisar os dados tanto no sentido direto quanto no inverso do tempo. Essa abordagem ¢
particularmente vantajosa na previsao de fluxo de poténcia, onde as condi¢des futuras de operagao também
podem ser influenciadas por interagdes passadas entre geracdo e demanda.

Além das camadas LSTM, foram incluidas camadas Dense, responsaveis por realizar transformacgdes
lineares e ndo lineares nas representagdes internas, conectando as saidas das LSTM as previsoes finais. A
camada de saida foi configurada com dois neurdnios, correspondentes as poténcias ativa (P) e reativa (Q)
da carga selecionada, garantindo que o modelo produzisse previsdes alinhadas as grandezas fisicas de
interesse.

Para o treinamento, o modelo foi compilado utilizando o otimizador Adam, conhecido por sua
eficiéncia em tarefas de deep learning devido ao ajuste adaptativo da taxa de aprendizado. A fungdo de
perda escolhida foi o Erro Absoluto Médio (MAE), adequada para problemas de regressao e que fornece
uma interpretacdo direta da média das diferencas entre valores previstos e reais de poténcia.

Apos o treinamento, as previsoes foram geradas com a fun¢do predict do Keras, integrada ao fluxo
de processamento. De forma geral, o TensorFlow e o Keras se destacaram nao apenas pela facilidade de
uso, mas também por oferecerem solu¢des avancadas para problemas complexos, como a captura de
dependéncias temporais na operacdo de sistemas elétricos. Esses frameworks foram fundamentais para

garantir a eficiéncia, flexibilidade e rigor cientifico do modelo de previsao proposto.



2.1.1.4 Algoritmo Genético para Otimiza¢do de Hiperparametros

Os Algoritmos Genéticos (AGs) constituem uma classe de técnicas estocasticas de otimizacao
inspiradas nos principios da selecdo natural e da genética. Inicialmente propostos por John Holland na
década de 1970, os AGs sao amplamente utilizados para resolver problemas de otimiza¢ao em que o espaco
de busca ¢ complexo, ndo linear ou de dificil abordagem por métodos tradicionais baseados em gradiente.
Sua robustez e adaptabilidade os tornam adequados para uma ampla variedade de aplicagdes em engenharia,
incluindo aprendizado de maquina e analise de sistemas de poténcia.

Em sua esséncia, os AGs operam sobre uma populagdo de solu¢des candidatas, chamadas de
individuos, que sdo representados por cromossomos (frequentemente codificados como cadeias binarias,
vetores de valores reais ou estruturas mais complexas, dependendo do problema). Cada cromossomo
corresponde a uma solucao potencial, cuja qualidade ¢ avaliada por meio de uma funcao de aptidao (fitness
function) que mede o qudo bem ele atende ao objetivo de otimizacao.

O processo de um AG segue as seguintes etapas principais:

e Inicializagdo: Uma populacao de solugdes candidatas é gerada aleatoriamente dentro do espaco de
busca definido. No contexto da otimizac¢ao de hiperparametros em redes neurais, esses candidatos
podem representar configuracdes como nimero de células LSTM, taxas de dropout, taxa de
aprendizado e nimero de épocas de treinamento.

e Selecdo: Os individuos sdo selecionados com base em suas pontuagdes de aptiddo, favorecendo
aqueles com melhor desempenho. Estratégias como roleta, torneio ou seleg¢@o por ranking garantem
que os individuos mais fortes tenham maior probabilidade de transmitir suas caracteristicas a
proxima geragao.

e Crossover (Recombinagdo): Pares de individuos selecionados trocam partes de suas representagdes
cromossOmicas para gerar descendentes. Esse processo imita a reproducdo bioldgica, promovendo a
combinacdo de caracteristicas vantajosas de diferentes solugdes.

e Mutacdo: Alteragdes aleatorias sao introduzidas nos cromossomos dos descendentes com uma
pequena probabilidade. A mutagdo garante diversidade na populagdo, evitando a convergéncia
prematura para solucdes subdtimas.

o Substitui¢do: Forma-se uma nova populagdo, geralmente combinando os melhores individuos da
geracdo anterior com os descendentes recém-gerados. O ciclo de avaliagdo, selecdo, crossover e
mutacao ¢ repetido por um numero definido de geracdes ou até que os critérios de convergéncia

sejam atendidos.
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No presente estudo, o Algoritmo Genético foi empregado para otimizar os hiperparametros do

2.1.1.4.1 Aplicagdo neste trabalho

modelo de previsao baseado em LSTM desenvolvido para o sistema IEEE de 30 barras. Em vez de selecionar
os parametros manualmente por tentativa e erro, o AG realizou uma busca automatica pela melhor
combinagdo de hiperparametros que minimizasse o erro de previsao.
Os seguintes hiperparametros foram codificados nos cromossomos do AG:
e Numero de unidades LSTM por camada: o AG explorou diferentes configuracdes de neuronios
ocultos, equilibrando a complexidade do modelo e sua capacidade de generalizagao.
o Numero de épocas de treinamento: ao otimizar esse parametro, o AG garantiu uma convergéncia
eficiente sem causar overfitting ou underfitting.
e Taxa de dropout: o AG ajustou o nivel de regularizacdo para evitar overfitting, aspecto
particularmente importante em modelos sequenciais com grande capacidade de representagao.
o Taxa de aprendizado: embora tenha sido fixada em parte dos experimentos, este parametro também
pode ser otimizado pelo AG para refinar a velocidade de convergéncia e a estabilidade do

treinamento.

A fungdo de aptidao foi definida como o Erro Absoluto Médio (MAE) entre os valores previstos e
reais de carga (poténcias ativa e reativa), apds o treinamento do modelo com determinado conjunto de
hiperpardmetros. Valores menores de MAE indicaram melhor desempenho, guiando a busca evolutiva em
direcdo a configuracdes mais adequadas.

Com a integragdao do AG ao processo de modelagem, o modelo alcangou um MAE final de 0,0507,
resultado superior ao de modelos de referéncia com hiperparametros ajustados manualmente. Esse
desempenho destaca a eficiéncia dos AGs na exploragdo de grandes espagos de busca e sua capacidade de
identificar, de forma adaptativa, solu¢des otimas para problemas complexos, como a previsdo de séries

temporais em sistemas elétricos.
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Figura 7: Esquema do Algoritmo Genético
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3 ESTUDO DE CASO E RESULTADOS OBTIDOS

Uma vez estabelecida a metodologia para a implementacao da previsdo de fluxo de poténcia, sua
validacdo necessariamente dependeu da comparagdo do desempenho do modelo em relagdo a um caso de
referéncia derivado de um alimentador real de distribuigao.

O cddigo foi implementado em Python para prever as poténcias ativa (P) e reativa (Q) de uma carga
selecionada, utilizando como entradas os dados de geracdo e varidveis auxiliares do sistema. Essa
abordagem permite que o modelo capture padrdes temporais € operacionais inerentes a dindmica dos
sistemas de poténcia, garantindo previsdes precisas de curto prazo. Tais previsdes sdo cruciais para o
planejamento e a operacdo de sistemas elétricos modernos, especialmente em cenarios com geragao
distribuida e demanda flutuante. A seguir, apresenta-se o procedimento adotado e as consideragdes sobre 0s

resultados obtidos.

3.1 DIVISAO DO CONJUNTO DE DADOS

A divisao do conjunto de dados ¢ uma etapa critica para garantir que o modelo aprenda padrdes
confidveis e seja capaz de generalizar para dados nao vistos. Neste estudo, foi adotada uma divisao temporal,
alocando 80% das amostras para treinamento e 20% para teste. Essa divisdo preserva a ordem cronoldgica
dos eventos, evitando o vazamento de informacdes (data leakage), aspecto fundamental em previsdes de

séries temporais. Diferentemente das divisdes aleatdrias, frequentemente utilizadas em outras tarefas de
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aprendizado de maquina, a manutengdo da sequéncia temporal reflete melhor as aplica¢des reais do modelo

em cenarios operacionais.

3.2 CONSTRUCAO DAS SEQUENCIAS

Como as redes LSTM sdo projetadas para processar dados sequenciais, o codigo empregou uma
estratégia de janela deslizante (sliding window) para construir as sequéncias temporais. Especificamente,
cada sequéncia de entrada foi composta por 20 instantes consecutivos de operacao do sistema, enquanto a
saida correspondeu aos valores de poténcia ativa e reativa da carga alvo no instante subsequente. Essa
configura¢do fornece ao modelo contexto historico suficiente para aprender as dependéncias temporais no

comportamento da carga.

3.3 ARQUITETURA DA REDE NEURAL

A arquitetura da rede neural foi projetada para capturar tanto as dependéncias temporais quanto as
ndo lineares presentes nos dados de fluxo de poténcia. Ela ¢ composta por camadas empilhadas de LSTM
Bidirecional, camadas densas totalmente conectadas e uma camada de saida linear. Diferente de arquiteturas
fixas, a configurac¢do deste modelo — como o numero de unidades LSTM por camada e o nimero de épocas
de treinamento — ndo foi escolhida arbitrariamente. Em vez disso, um Algoritmo Genético (AG) foi
utilizado para otimizar os hiperparametros, buscando combinagdes que resultassem na melhor precisao de
previsao.

Camadas LSTM Bidirecionais: foram testadas duas camadas bidirecionais com diferentes
quantidades de unidades (ex.: 64, 128), permitindo que a rede aprendesse dependéncias temporais tanto no
sentido direto quanto no inverso. Isso € especialmente relevante em sistemas elétricos, onde as condigdes
atuais podem depender tanto de estados passados quanto de estados em evolugao.

Regularizagdo por Dropout: foi aplicada uma taxa de dropout entre 1% e 5%, a fim de mitigar
overfitting e assegurar que o modelo generalizasse bem para condi¢des operacionais ndo vistas.

Camada Densa: apds as LSTM, foi incluida uma camada densa de tamanho variavel (otimizada pelo
AGQ) para refinar as representacdes aprendidas antes da saida final.

Camada de Saida: a camada final continha dois neurdnios, correspondentes as previsdes de poténcia

ativa (P) e reativa (Q) da carga selecionada.

3.4 OTIMIZACAO DE HIPERPARAMETROS COM ALGORITMO GENETICO
O Algoritmo Genético desempenhou papel central na escolha da configuracao 6tima do modelo. As
solugdes candidatas (cromossomos) codificaram hiperpardmetros como o ntimero de células LSTM por

camada e o nimero de épocas de treinamento. O AG evoluiu essas solugdes ao longo das geracdes, por meio
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dos processos de selecdo, crossover e mutacdo, convergindo para arquiteturas que minimizavam o erro de
validagdo. Essa abordagem evolutiva mostrou-se eficiente no balanceamento entre a complexidade do
modelo e sua precisao preditiva.

E importante destacar que os hiperparimetros obtidos representam a melhor configuragdo para o
conjunto de dados e condi¢des operacionais deste estudo. No entanto, diferentes conjuntos de dados ou
cenarios de sistemas elétricos podem exigir configuragdes alternativas, refor¢ando a flexibilidade da

combinagdo entre redes LSTM e técnicas de otimizagdo evolutiva como os Algoritmos Genéticos.

3.5 COMPILACAO E CONFIGURACAO DO MODELO
Apds definida a arquitetura, o modelo foi compilado com os seguintes elementos:

e Funcao de Perda: utilizou-se o Erro Absoluto Médio (MAE). Diferentemente do Erro Quadratico
Médio (MSE), que penaliza mais severamente grandes desvios, 0 MAE fornece uma métrica de
interpretagdo mais direta no contexto de fluxo de poténcia, representando a magnitude média dos
erros de previsao nas poténcias ativa e reativa.

e Otimizador Adam: adotou-se o Adam (Adaptive Moment Estimation), que combina vantagens do
RMSProp e do Gradiente Estocastico (SGD). O Adam ajusta dinamicamente a taxa de aprendizado
de cada parametro com base em estimativas de primeira e segunda ordem (média e variancia),
acelerando a convergéncia e garantindo estabilidade no treinamento de dados sequenciais

complexos.

3.6 TREINAMENTO DO MODELO
O treinamento foi realizado ao longo de 15 épocas, com tamanho de lote de 32 amostras. Durante o
treinamento, aplicaram-se as seguintes estratégias:

e Taxa de Aprendizado Adaptativa: embora ndo tenha sido utilizado explicitamente o callback
ReduceLROnPlateau, a taxa de aprendizado foi ajustada empiricamente e também pelo Algoritmo
Genético, assegurando convergéncia sem oscilagdes significativas.

e Monitoramento da Funcao de Perda: as perdas de treinamento e validagdo foram acompanhadas a
cada época, a fim de detectar sinais de overfitting ou underfitting. A evolu¢ao dessas perdas ¢
mostrada na Figura 7 (Grafico de Perda de Treinamento e Validacdo), confirmando o processo de

aprendizado estavel do modelo.



3.7 AVALIACAO DO MODELO
Apo6s o treinamento, o modelo foi avaliado no conjunto de teste para medir sua capacidade de
generalizagdo. A avaliacdo envolveu as seguintes etapas:

o Desnormalizacao: tanto os valores previstos quanto os reais foram reescalados para suas unidades
originais utilizando os objetos MinMaxScaler ajustados. Isso assegurou que as métricas de avaliacao
fossem interpretaveis dentro do contexto fisico do fluxo de poténcia.

e Erro Absoluto Médio (MAE): o MAE final obtido foi de 0,0507, refletindo um elevado grau de
precisao considerando a escala das poténcias ativa e reativa no sistema IEEE de 30 barras. Esse baixo
erro demonstra a robustez do modelo e sua capacidade de capturar relagdes temporais e ndo lineares
complexas.

e Visualizacdo das Previsdes: foram gerados graficos comparativos entre valores reais e previstos para
as poténcias ativa e reativa da carga alvo. Esses graficos, apresentados nas Figuras 8 (Poténcia Ativa
—P2) e 9 (Poténcia Reativa — Q2), destacam a capacidade do modelo de acompanhar tendéncias e

flutuacdes, confirmando sua eficacia na previsao de curto prazo do comportamento de cargas.

Figura 8: Grafico de perdas
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Figura 9: Comparagao de dados reais e previstos de P2
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Figura 10: Comparacdo de dados reais e previstos de Q2
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4 FORCAS E LIMITACOES DO ESTUDO

A maioria dos estudos que analisam previsdes em sistemas elétricos de poténcia ndo combina
técnicas de redes neurais recorrentes com unidades de memoria de longo prazo (LSTM) e Algoritmos
Genéticos (AG) para otimizacao de hiperparametros em problemas de previsao de carga. Como ponto forte
do nosso estudo, destacamos justamente a utilizagdo dessa abordagem integrada, que permitiu uma
adaptagdo automatica da rede neural e reduziu a subjetividade na escolha dos parametros de treinamento.
Além disso, enfatizamos que a andlise foi realizada utilizando dados derivados de um sistema padrio
amplamente aceito na literatura (IEEE 30 barras), garantindo a reprodutibilidade e comparabilidade dos

resultados. Outro aspecto positivo € que os resultados alcangaram um erro médio absoluto (MAE)



relativamente baixo, o que reforca a robustez do modelo proposto e sua utilidade pratica para aplicagdes de
previsao no setor elétrico. Assim, acreditamos que os resultados deste estudo sdo de grande relevancia, pois
oferecem evidéncias iniciais sobre a aplicabilidade de técnicas de aprendizado profundo combinadas a
algoritmos evolutivos em cenarios de fluxo de poténcia.

Entretanto, reconhecemos que nosso estudo também apresenta limitagdes. Primeiramente, ele foi
conduzido considerando apenas a previsdo da poténcia ativa e reativa de uma carga especifica, o que
restringe a generalizacao dos resultados para todo o sistema. Além disso, embora os resultados tenham sido
satisfatorios, a utilizagdo de dados simulados limita a validade externa, uma vez que nao foram considerados
ruidos, falhas de medi¢do ou contingéncias tipicas de sistemas reais. Outro ponto limitante é o custo
computacional associado ao Algoritmo Genético, que pode se tornar elevado em aplicagdes em tempo real
ou em sistemas de maior porte. Outros fatores limitantes incluem a temporalidade reduzida da base de dados
analisada e a auséncia de testes sob cenarios de eventos extremos ou condigdes de operagdo andomalas.
Embora o modelo tenha mostrado capacidade preditiva em condi¢des normais, ainda nao foi validado em
situacdes de maior variabilidade ou distlrbios elétricos, que sdo comuns em redes reais.

Portanto, pesquisas adicionais sdo sugeridas, especialmente aquelas que envolvam sistemas de maior
porte e dados reais de operacao, para avaliar a robustez do modelo em condi¢des mais desafiadoras. Também
¢ recomendada a investigacdo de outras metaheuristicas de otimiza¢ao, bem como a expansao do escopo
para multiplas cargas simultaneas, de modo a aumentar a aplicabilidade e a generalizagdo do método

proposto.

5 CONCLUSOES

Os resultados obtidos neste estudo demonstram a eficacia dos modelos de Redes Neurais Recorrentes
(RNN), com unidades Long Short-Term Memory (LSTM), para a previsdo da poténcia de carga
(componentes ativa e reativa) no sistema IEEE de 30 barras. O modelo proposto, otimizado por meio de um
Algoritmo Genético para a selecdo de hiperparametros, alcancou um Erro Absoluto Médio (MAE) de
0,0507, o que indica um elevado nivel de precisdo na captura de padrdes temporais a partir de dados
histéricos de fluxo de poténcia.

Embora o modelo tenha sido projetado para prever a poténcia ativa e reativa de uma Unica carga, a
metodologia pode ser facilmente estendida para multiplas cargas e configuragdes de rede mais complexas.
O uso das poténcias ativa e reativa dos geradores como variaveis de entrada mostrou-se suficiente para
modelar a dindmica da carga selecionada, reduzindo a complexidade computacional e, a0 mesmo tempo,
mantendo um desempenho preditivo robusto.

A integracdo do Algoritmo Genético foi particularmente importante, pois possibilitou uma busca

automatica por hiperparametros 6timos — como o numero de células LSTM por camada e o nimero de



¢épocas de treinamento — resultando em maior velocidade de convergéncia e menor erro de previsdao em
comparag¢do a modelos ajustados manualmente.

Este trabalho representa uma contribuicdo significativa para o desenvolvimento de técnicas
inteligentes de previsao aplicadas a sistemas de poténcia, oferecendo uma base soélida para aprimorar o
planejamento operacional, a confiabilidade e a eficiéncia em smart grids. Pesquisas futuras podem explorar
a aplicacdo desta abordagem a todas as cargas do sistema IEEE de 30 barras, a inclusdo de fontes renovaveis
estocasticas e a utilizacdo de técnicas hibridas de otimizagdo, com o objetivo de refinar ainda mais a

capacidade preditiva de modelos baseados em redes neurais em aplicagdes no setor elétrico.
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