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RESUMO 

As incertezas nos parâmetros de um manipulador robótico podem afetar, de forma significativa, o 

desempenho do manipulador, ocasionando erros de regime e de seguimento de trajetória. Controladores 

adaptativos apresentam-se como uma boa alternativa para esses sistemas, pois possuem como principal 

característica a capacidade de aprenderem online usando estimação de parâmetros em tempo real. No 

entanto, controladores adaptativos não são geralmente projetados com a qualidade de serem ótimos com 

respeito aos critérios de desempenho especificados e, desta forma, não são viáveis para aplicações onde o 

uso ótimo de recursos é altamente desejável, como por exemplo em robôs humanoides e robôs de serviços. 

Este artigo apresenta o projeto e investigação de desempenho de um controlador que combina características 

de controle adaptativo e controle ótimo para um manipulador robótico. Especificamente, o esquema de 

controle proposto é implementado como uma estrutura ator-crítico, a qual está inserida no contexto de 

aprendizado por reforço, caracterizando este projeto como uma abordagem independente do modelo da 

planta. Em contraste a outros sistemas ator-críticos em que são usadas duas redes neurais independentes, 

uma para aproximar a função valor, e a outra para aprender ações de controle, neste esquema, se define uma 

única rede neural, o que reduz o número de parâmetros a serem estimados. Os resultados de simulação 

demonstram o desempenho desejado do controlador proposto que atua em um manipulador de juntas 

rotativas com dois graus de liberdade.  

 

Palavras-chave: Manipulador Robótico. Controle Adaptativo. Controle Ótimo. Aprendizado por Reforço. 

Esquema Ator-Crítico. 

 

 

1 INTRODUÇÃO 

O desenvolvimento de estratégias de controle para manipuladores robóticos apresenta dificuldades 

decorrentes das próprias características do sistema, isto é, um robô articulador é um sistema dinâmico 

multivariável, com fortes não-linearidades devidas aos acoplamentos de suas juntas e movimentos, além de 

apresentar parâmetros incertos ou que variam no tempo, tais como a massa e inércia dos elos, atritos ou 

folgas nas engrenagens das juntas, variações nas cargas de trabalho, localização do centro de massa (que 



 
  

 
 

pode mudar quando o robô estiver com carga), entre outras (Fateh; Fateh, 2019). Estas imprecisões 

paramétricas resultam em perdas de exatidão e velocidade nos movimentos do manipulador, que em 

determinadas aplicações é altamente indesejável. Já a dinâmica não-linear pode levar o sistema à 

instabilidade em determinados pontos de operação (Craig, 2021). 

Controladores convencionais de realimentação, tal como o PID (Proporcional-Integral-Derivativo), 

são vastamente utilizados na indústria por serem simples, fáceis de implementar e por apresentarem bom 

desempenho em diversas aplicações (Borase et al., 2021). Entretanto, este esquema de controle, por ser um 

tipo de controle com ganhos fixos, torna-se insuficiente quando aplicado a sistemas com não linearidades 

e/ou incertezas (parâmetros imprecisos, dinâmicas não-modeladas de alta frequência e perturbações), ou 

seja, sistemas que apresentam pontos de operação variáveis (Konstantopoulos; Baldivieso-Monasterios, 

2020). 

Dentre os controladores clássicos aplicados a manipuladores existem aqueles baseados em modelo 

(cinemático e/ou dinâmico para controle de posição, velocidade e força). Porém, estas abordagens 

necessitam do conhecimento completo das equações que descrevem o comportamento do sistema, sendo 

elas bastante complexas e com parâmetros que muitas vezes são incertos. A complexidade do modelo cresce 

também com o aumento de juntas e elos do manipulador, aumentando o custo computacional para solucionar 

estas equações (Moosavi; Zafar; Sanfilippo, 2022).  

A teoria de controle adaptativo fornece meios para desenvolver soluções para sistemas dinâmicos 

que demandam controladores mais complexos. Esta abordagem permite compensar, de forma online  ̧ as 

variações e incertezas paramétricas do sistema garantindo que os critérios de desempenho desejados sejam 

alcançados (Sun et al., 2020). Tradicionalmente, os métodos de controle adaptativo podem ser divididos em 

duas abordagens: controle indireto e controle direto (Qi; Tao; Jiang, 2019). Em controle indireto, a 

estimação dos parâmetros do sistema precede a geração de uma entrada de controle. Em controle direto, os 

parâmetros do controlador são diretamente ajustados sem a necessidade das equações que regem o 

comportamento do sistema. 

Na literatura de Controle Adaptativo encontram-se diversos estudos e métodos aplicados ao controle 

de trajetória de manipuladores robóticos. Dubowsky e Desforges (1979) são os pioneiros em empregar 

técnicas de controle adaptativo em robôs articulados. A abordagem usada por estes pesquisadores foi o 

Sistema Adaptativo por Modelo de Referência (Model Reference Adaptive System - MRAS). Resultados 

práticos também mostraram os benefícios das abordagens baseadas nas técnicas self-tuning e backstepping 

em relação ao controle convencional com ganhos fixos (Clegg; Dunnigan; Lane, 2001) (Sasaki et al., 2009) 

(Hu; Xu; Zhang, 2012). Abordagens híbridas também foram exploradas (Maliotis, 1991) (Al-Olimat; 

Ghandakly, 2002) (Chen, 2005) (Alqaudi et al., 2016) (Zhang; Wei, 2017). Em (Wu; Yan; Cai, 2019) (Fateh; 

Fateh, 2019) (Yilmaz et al., 2022) (Freire; Rossomando; Soria, 2018) são propostos projetos de controle 



 
  

 
 

adaptativo baseados em técnicas de inteligência artificial, tais como redes neurais e lógica fuzzy, que são 

capazes de compensar as incertezas do modelo de um robô manipulador. 

Apesar das técnicas de controle adaptativo terem alcançado sucesso em muitas aplicações, um 

aspecto que deve ser observado é que os projetos de controladores resultantes desses métodos, em geral, 

têm sido estruturados sem considerar a otimização da ação de controle e, desta forma, não são viáveis para 

aplicações onde o uso de estratégias ótimas de controle é requerida, como por exemplo em robôs 

humanoides/robôs de serviços (Khan et al., 2012). Nesse caso, uma abordagem conjunta das técnicas de 

controle adaptativo e controle ótimo é desejada. Controle ótimo consiste basicamente em determinar uma 

lei de controle de maneira a minimizar um critério de desempenho desejado. No contexto da robótica, 

critérios de desempenho podem envolver a energia ou força para a execução do movimento, ao mesmo 

tempo que devem ser satisfeitas as restrições físicas do sistema, tais como limites dos atuadores ou das 

juntas.  

Muitos esforços na teoria de controle de sistemas estão atualmente concentrados em uma área do 

aprendizado de máquina baseada nos estudos do comportamento animal e psicologia cognitiva, chamada 

Aprendizado por Reforço (Reinforcement Learning - RL), que visa incorporar características de sistemas 

biológicos para o tratamento de sistemas com incertezas, introduzindo diversos termos, tais como adaptação, 

aprendizado, reconhecimento de padrões e auto-organização (Guo; Yan; Cui, 2020) (Yaghmaie; Gustafsson; 

Ljung, 2023) (Chen; Dai; Dong, 2024a) (Chen; Dong; Dai, 2024b) (Zhao et al., 2025) (Su et al., 2025) 

(Wang et al., 2025). O tema central na pesquisa de RL é o projeto de algoritmos que aprendem políticas de 

controle ótimas através do conhecimento apenas de amostras de transição dos estados ou trajetórias, que são 

coletadas antecipadamente ou pela interação em tempo real com o sistema.  

Métodos Ator-Crítico constituem uma classe de técnicas de aprendizado por reforço que consistem 

essencialmente de duas estruturas paramétricas independentes (por exemplo, redes neurais), uma para 

representar a política de controle, denominada Ator, e a outra estrutura de rede é para representar a função 

valor, chamada Crítico (Sutton; Barto, 2018). O ator é um agente que interage com o ambiente, ou seja, o 

ator é o controlador que estabelece ações de controle, enquanto o crítico avalia o efeito das ações de controle 

e fornece diretrizes sobre como melhorar a lei de controle. 

Aprendizado por reforço pode ser visto em (Kiumarsi et al, 2018) na perspectiva de um campo de 

pesquisa promissor para o projeto de uma classe de controladores adaptativos com estrutura ator-crítico que 

aprendem online soluções de controle ótimo sem fazer uso do modelo da dinâmica do sistema (planta). Esta 

abordagem resolve a equação de otimização (equação de Hamilton-Jacobi-Bellman - HJB) em uma maneira 

"para frente no tempo" usando métodos de diferenças temporais, aproximação de funções e melhorias de 

políticas. Tais controladores são inspirados em estruturas neurais biológicas que fornecem capacidades para 

lidar de forma eficaz com o grau de complexidade de sistemas não-lineares, incertos e parcialmente 



 
  

 
 

observáveis. Em (Kiumarsi et al, 2018), são apresentadas as principais ideias e algoritmos de aprendizado 

por reforço bem como suas aplicações em controle ótimo de sistemas dinâmicos.  

 

1.1 OBJETIVOS 

O presente artigo tem por objetivo avaliar o potencial de um algoritmo de aprendizado por reforço 

para resolver problemas de controle ótimo online da trajetória de um manipulador robótico com espaço de 

estado contínuo (espaço das juntas). Em contraste com a maioria dos algoritmos ator-crítico reportados na 

literatura (vide Seção 2), em que se utilizam duas redes neurais, uma para aproximar a função valor, e a 

outra para aprender ações de controle, o algoritmo proposto neste trabalho emprega uma arquitetura ator-

crítico onde uma única rede neural é usada para aproximar a solução da equação HJB, o que reduz 

significativamente o número de parâmetros a serem estimados. Especificamente, neste esquema, ações de 

controle são calculadas de maneira exata por meio de um esquema de política gulosa com respeito à função 

valor, ao invés de se usar um aproximador paramétrico para representar a política de controle. Experimentos 

realizados em um braço robótico UR10 do simulador V-REP mostram que tal algoritmo aprende com 

sucesso a lei de controle ótimo para as tarefas de regulação e rastreamento para diferentes sinais de 

referência. 

 

2 TRABALHOS CORRELATOS 

Contribuições anteriores importantes para o projeto de controle fundamentado em RL incluem os 

trabalhos de Peters e Schaal (2008a) (2008b), que investigaram diversos métodos de aprendizado por reforço 

para robôs humanoides. Esses métodos foram classificados em três categorias: política gulosa, gradiente de 

política “vanilla” e gradiente de política natural. A abordagem Ator-Crítico natural, que explora a 

formulação do gradiente de política natural, foi destacada pelos autores por apresentar melhores 

propriedades de convergência. Uma extensão desse estudo é mostrada em (Bhatnagar et al., 2009).  

Já (Shah; Gopal, 2009) apresentaram uma abordagem de controle baseada em Aprendizado Q para 

robôs manipuladores em ambientes incertos e forneceram um estudo comparativo de diferentes métodos de 

aproximação de função, tais como fuzzy, redes neurais, árvore de decisão e máquina de vetor de suporte. 

Em (Khan et al., 2011, 2012), os autores enfatizaram aplicações de controladores RL em sistemas 

robóticos e propuseram um esquema de controle adaptativo ótimo fundamentado em Aprendizado Q (Q-

Learning) e Programação Dinâmica Aproximada. A estratégia foi implementada no braço de um robô 

humanoide (Bristol Elumotion-Robotic-Torso II) considerando um caso sem restrições e outro com 

restrições de movimento.  

Em (Pane; Nageshrao; Babuška, 2016), os autores forneceram validação experimental de um 

compensador baseado em aprendizado Ator-Crítico para melhorar o desempenho de um robô manipulador. 



 
  

 
 

O método proposto dispensa a necessidade de aprender o modelo do sistema e pode ser utilizado em 

qualquer controlador por realimentação (PID, LQR etc.). A validação do método foi demonstrada através 

de experimentos em um robô manipulador industrial com seis graus de liberdade para diferentes tipos de 

trajetórias de referência. Uma extensão desse trabalho é apresentada em (Pane et al., 2019).  

A aplicação de controladores RL em manipuladores robóticos também é mostrada em (Hu; Si, 2018). 

Nesse trabalho, uma estratégia de Aprendizado Ator-Crítico com observador de estado via rede neural foi 

implementada para controlar um braço robótico com parâmetros desconhecidos e sujeito a zonas mortas 

desconhecidas.  

Khan et al. (2019) propuseram um controle de complacência adaptativo ótimo para um dispositivo 

robótico de auxílio à locomoção. O esquema de controle sugerido é fundamentado em Aprendizado Q e 

programação dinâmica aproximada. Esse esquema é completamente independente de modelo dinâmico e 

emprega realimentação da posição e velocidade da junta, bem como o torque detectado da junta (aplicado 

pelo usuário durante a caminhada) para controle de complacência. A eficiência do controlador é testada em 

simulação em um modelo de dispositivo robótico de auxílio à locomoção. 

Kamboj et al. (2020) apresentaram uma estratégia de controle cinemático ótimo em tempo discreto 

para um manipulador usando a estrutura Ator-Crítico. A metodologia exposta foi aplicada em um modelo 

3D de um manipulador com seis graus de liberdade em experimentos realizados em um software de 

simulação. Em seguida, implementou-se a estratégia em um robô real do mesmo modelo do simulado.  

Em (He et al., 2021), os autores discutiram o projeto de controle e a validação de experimentos de 

um sistema de manipulador flexível de dois elos. Uma estratégia de controle de aprendizado por reforço é 

desenvolvida com base na estrutura ator-crítico para atenuar vibrações enquanto mantém o rastreamento da 

trajetória. 

Um controlador de rastreamento baseado em Aprendizado Ator-Crítico para um manipulador 

também foi estudado por (Cao et al., 2023). Nesse trabalho, a técnica de modos deslizantes é utilizada para 

que a ação obtida pelo esquema Ator-Crítico garanta a convergência do erro de rastreamento em um tempo 

fixo. Além disso, um compensador antiwindup foi projetado para lidar com os efeitos da saturação do 

atuador da junta.  

Na literatura acima, a maioria dos algoritmos RL ator-crítico são implementados utilizando duas 

redes neurais, uma para aproximar a função valor, e a outra para aprender ações de controle. Para reduzir a 

complexidade computacional associada com métodos ator-críticos, propõe-se, no presente artigo, uma 

arquitetura onde uma única rede neural é usada para aproximar a solução de controle ótimo, o que reduz 

significativamente o número de parâmetros a serem estimados. Especificamente, ações de controle são 

calculadas de maneira exata por meio de um esquema de política gulosa com respeito à função valor, ao 

invés de se usar uma aproximação paramétrica para representar a política de controle. 



 
  

 
 

3 DESCRIÇÃO DO SISTEMA MANIPULADOR ROBÓTICO 

Um manipulador robótico, ou robô articulado, é formado por um conjunto de corpos individuais 

conectados entre si formando uma cadeia cinemática capaz de realizar tarefas através da interação com o 

ambiente (Craig, 2021). As duas partes fundamentais que compõem um robô articulado são os elos, ou 

articulações, e as juntas. Os elos são as estruturas físicas (rígidas ou flexíveis) que compõem o robô. Já as 

juntas são responsáveis por promover o movimento relativo entre as articulações por meio de acionadores 

e são comumente classificadas de acordo com mobilidade que estas viabilizam. Os tipos mais comuns 

encontrados na indústria são as juntas rotacionais e as prismáticas.  

 

Figura 1. Elos e Juntas de um robô articulado. 

 
Fonte: Abbas, 2018. 

 

A Figura 1 ilustra uma sequência de elos e juntas de um braço robótico. As extremidades do robô 

articulador são denominadas de base e efetuador. A base fica ligada ao primeiro elo e fixa o mecanismo em 

algum ponto no espaço de tarefas. O efetuador é uma ferramenta conectada ao último elo do articulador e é 

por este ponto que há a interação com o ambiente. O tipo de atuador instalado dependerá da tarefa a ser 

executada. 

 

3.1 EQUAÇÕES DINÂMICAS DE UM MANIPULADOR ROBÓTICO 

A dinâmica dos manipuladores estuda a relação entre as forças aplicadas nos atuadores das juntas e 

o movimento do mecanismo. A formulação de Lagrange permite modelar o comportamento dinâmico de 

um corpo em termos das energias cinéticas e potenciais ao invés de considerar os momentos e forças 

aplicadas individualmente em cada junta. A equação de Lagrange é expressa por 

  



 
  

 
 

 𝜏 =
𝑑

𝑑𝑡
( 

𝜕𝐿

𝜕𝑞̇
) −  

𝜕𝐿

𝜕𝑞
 (1) 

 𝐿(𝑞̇, 𝑞) = 𝐾(𝑞̇, 𝑞) − 𝑈(𝑞) , (2) 

 

em que 𝐾(⋅) é a energia cinética e 𝑈(⋅) é a energia potencial armazenada no mecanismo. Essa equação é 

escrita em termos das coordenadas generalizadas 𝑞 do articulador e sua derivada 𝑞̇ no tempo. O termo 𝜏, 

por sua vez, representa o vetor generalizado de forças, incluindo as forças e os torques aplicados no sistema. 

Para um robô manipulador com 𝑛 elos rígidos, a energia cinética pode ser escrita na forma 

 

 𝐾(𝑞̇, 𝑞) = ∑ 𝑘𝑖

𝑛

𝑖=0

 (3) 

 𝑘𝑖 =
1

2
𝑚𝑖𝑣𝐶𝑖

𝑇 𝑣𝐶𝑖
+

1

2
𝜔𝑖

𝑇𝐶𝑖𝐼𝑖𝜔𝑖  , (4) 

 

em que 𝑘𝑖 é a energia cinética para o 𝑖-ésimo elo. Para cada elo, tem-se duas componentes, uma relacionada 

a velocidade linear 𝑣𝐶𝑖
, e a outra, a velocidade angular 𝜔𝑖, relativas ao centro de massa da respectiva 

articulação, com 𝑚𝑖 a massa do elo 𝑖, e 𝐼𝑖
𝐶𝑖  é a matriz de inércia.  

A energia potencial pode ser expressa como 

 

 𝑈𝑞=𝑖=0𝑛𝑢𝑖 (5) 

 𝑢𝑖=𝑚𝑖𝑔𝑇𝑃𝐶𝑖 (6) 

 

em que 𝑢𝑖 é a energia potencial para o 𝑖-ésimo elo, definida em termos da massa 𝑚𝑖, do vetor de gravidade 

𝑔 e da localização 𝑃𝐶𝑖
 do centro de massa relativo à base. 

Aplicando-se o lagrangeano 𝐿(∙) na equação (1), pode-se reordenar os termos da expressão resultante 

de modo a obter 

 

 𝜏 = 𝑀(𝑞)𝑞̈ + 𝑁(𝑞, 𝑞̇) + 𝐺(𝑞), (7) 

 

em que 𝑀(𝑞) é a matriz 𝑛 × 𝑛 de massa do manipulador, 𝑁(𝑞, 𝑞̇) é um vetor de dimensão  𝑛 × 1 relacionado 

as forças de Coriolis e centrípeta, e 𝐺(𝑞) é um vetor 𝑛 × 1 com os termos que envolvem a gravidade.  

Desse modo, o modelo de um manipulador pode ser escrito na forma de Espaço de Estados por 

 

 

4 METODOLOGIA 

No contexto de controle ótimo e aprendizado por reforço, a noção de maximizar recompensas futuras 

 [
𝑞̇
𝑞̈

] = [
𝑞̇

−𝑀−1(𝑁 + 𝐺)
] + [

0
𝑀−1] 𝜏. (8) 



 
  

 
 

ponderadas é modificada para minimizar o custo de controle. Desta forma, o objetivo é determinar uma lei 

de controle ou política de controle ℎ∗(𝑥𝑘,  𝑑𝑘) = 𝑢𝑘
∗  que minimize o índice de desempenho (função valor) 

 

 𝑉(𝑥𝑘 , 𝑑𝑘) = ∑ 𝛾𝑖−𝑘

∞

𝑖=𝑘 

𝑟(𝑥𝑖 , 𝑢𝑖 , 𝑑𝑖), (9) 

 

onde 𝑥𝑘 ∈ ℝ𝑛 é o vetor de estado,  𝑢𝑘 ∈ ℝ𝑚 é o vetor de entrada de controle, 𝑑𝑘 é o vetor de trajetória 

desejada, 0 < 𝛾 ≤ 1 é o fator de desconto, e 𝑟(⋅) é a função de utilidade que retorna o custo de controle em 

um passo de tempo. Uma função de utilidade razoavelmente geral em problemas de minimização de energia 

é dada por: 

 

 𝑟(𝑥𝑖 , 𝑢𝑖 , 𝑑𝑖) = 𝑟̃(𝑥𝑖 , 𝑑𝑖) + 𝑢𝑖
𝑇𝑅𝑢𝑖 , (10) 

 

onde 𝑅 é uma matriz definida positiva. O vetor 𝑑𝑖 pode ser descrito como uma demanda de projeto, fazendo 

com que 𝑟̃(⋅) represente o custo para executar a tarefa desejada, como por exemplo, o custo de rastreamento.  

Usando o princípio da otimalidade de Bellman (Vrabie; Vamvoudakis; Lewis, 2013), o índice de 

desempenho ótimo pode ser escrito como 

 

 𝑉∗(𝑥𝑘 , 𝑑𝑘) = min
𝑢𝑘

(𝑟(𝑥𝑘 , 𝑢𝑘, 𝑑𝑘) + 𝛾𝑉∗(𝑥𝑘+1, 𝑑𝑘+1)). (11) 

 

Em aprendizado por reforço, uma variante da função valor 𝑉(⋅), chamada função 𝑄 (ou função valor 

ação), é usada. Tal função tem uma aplicação apropriada nos projetos de controle em que o modelo da planta 

não está disponível. A função 𝑄 associada à uma política de controle ℎ é definida por 

 

 𝑄ℎ(𝑥𝑘 ,  𝑢𝑘,  𝑑𝑘) = 𝑟(𝑥𝑘 ,  𝑢𝑘,  𝑑𝑘) + 𝛾𝑉ℎ(𝑥𝑘+1,  𝑑𝑘+1), (12) 

 

e a função 𝑄 ótima satisfaz a seguinte equação 

 

 𝑄∗(𝑥𝑘 ,  𝑢𝑘,  𝑑𝑘) = 𝑟(𝑥𝑘 ,  𝑢𝑘,  𝑑𝑘) + 𝛾𝑉∗(𝑥𝑘+1,  𝑑𝑘+1). (13) 

 

Combinando as equações (11) e (13), a equação da otimalidade de Belmann em termos da função 𝑄 

é dada por 

 

 𝑉∗(𝑥𝑘 ,  𝑑𝑘) = min
𝑢𝑘

(𝑄∗(𝑥𝑘 ,  𝑢𝑘, 𝑑𝑘)) (14) 

 

e a política de controle ótima é obtida por 



 
  

 
 

 ℎ∗(𝑥𝑘 ,  𝑑𝑘) = arg min
𝑢𝑘

𝑄∗(𝑥𝑘 , 𝑢𝑘, 𝑑𝑘). (15) 

 

Supondo 𝑄∗ suficientemente suave (diferenciável), o sinal de controle pode ser obtido como solução 

da equação 

 

 

4.1 ESTRATÉGIA DE APRENDIZADO ONLINE ATOR-CRÍTICO 

O esquema ator-crítico descrito a seguir considera um sistema manipulador com dois graus de 

liberdade, podendo ser estendido para manipuladores com 𝑛 graus de liberdade. A lei de controle é 

sintetizada no problema de rastreamento ótimo da posição das juntas do manipulador. Em particular, 𝑥𝑘 =

[𝑥𝑘1 𝑥𝑘2 𝑥𝑘3 𝑥𝑘4]𝑇 é definido como o vetor de estado no instante de tempo 𝑘, onde 𝑥𝑘1 = 𝑞1 e 𝑥𝑘2 =

𝑞2 são, respectivamente, a posição angular da junta 1 e da junta 2, e 𝑥𝑘3 = 𝑞1̇ e 𝑥𝑘4 = 𝑞2̇ são, na ordem 

devida, a velocidade angular da junta 1 e da junta 2. O sinal de controle, naturalmente, é um vetor 2 × 1 

onde 𝑢𝑘 = 𝜏 é a força aplicada nas juntas. Para o problema de rastreamento ótimo considerado, a função de 

utilidade reduz-se a 

 

 𝑟(𝑥𝑘 ,  𝑒𝑘 ,  𝑢𝑘) = 𝑒𝑘
𝑇𝑄𝑐𝑒𝑘 + (𝑢𝑘+1 − 𝑢𝑘)𝑇𝑆(𝑢𝑘+1 − 𝑢𝑘) + 𝑢𝑘

𝑇𝑅𝑢𝑘 ≡ 𝑟𝑘 , (17) 

 

em que 𝑄𝑐 ∈ ℝ4×4, 𝑅 ∈ ℝ2×2 e 𝑆 ∈ ℝ2×2 são matrizes definidas positivas e diagonais.  

 

No presente estudo, a estrutura paramétrica para aproximar a função 𝑄 assume a forma dada por 

 

 𝑄̂𝑖(𝑥𝑘 ,  𝑢𝑘 ,  𝑑𝑘,  𝑤𝑖) = 𝑤𝑖
𝑇𝜙(𝑥𝑘 ,  𝑢𝑘 ,  𝑑𝑘), (18) 

 

em que 𝑤𝑖 é a 𝑖-ésima estimação do vetor de pesos da rede neural e 𝜙(⋅) é o vetor de funções de ativação 

ou funções de base. Considera-se que o valor desejado para estimação do parâmetro 𝑤𝑖 é dado por 

 

 𝛥𝑜𝑏𝑗𝑒𝑡𝑖𝑣𝑜 = 𝑟(𝑥𝑘,  𝑒𝑘,  𝑢𝑘) + 𝛾𝑄̂𝑖(𝑥𝑘+1, 𝑢𝑘+1, 𝑑𝑘+1) (19) 

 

A Figura 2 ilustra a arquitetura da rede neural utilizada para estimar a função 𝑄, em que 𝑚 = 4, 𝑛 =

2 e 𝑝 = 105. As funções 𝜙𝑗, 𝑗 = 1, … , 𝑝, são as componentes do vetor de funções de ativação resultantes 

do produto de Kronecker dado na equação (21). 

O vetor de pesos 𝑤𝑖 é calculado pela minimização, em um sentido dos mínimos quadrados, do erro 

de diferencial temporal, que é definido por 

 
∂𝑄∗(𝑥𝑘 , 𝑢𝑘, 𝑑𝑘)

∂𝑢𝑘

= 0. (16) 



 
  

 
 

Figura 2. Arquitetura da rede neural utilizada para estimar a função 𝑄. 

 
Fonte: Elaborado pelos autores. 

 

 𝛿𝑘 = 𝑟𝑘 + 𝛾𝑄̂𝑖(𝑥𝑘+1, 𝑢𝑘+1, 𝑑𝑘+1, 𝑤𝑖) − 𝑄̂𝑖(𝑥𝑘 , 𝑢𝑘, 𝑑𝑘 , 𝑤𝑖). (20) 

 

O vetor de funções de ativação é construído por polinômios de ordem superior. Por simplificação, 

𝜙(⋅) será representado utilizando o produto de Kronecker ⊗ com a exclusão dos termos redundantes 

(Vrabie; Vamvoudakis; Lewis, 2013). Esta exclusão é necessária para que os elementos que compõem o 

vetor de funções de base 𝜙(⋅) tornam-se linearmente independentes. O objetivo é inserir alguns elementos 

quadráticos e termos de até quarta ordem dos erros de rastreamento, dos estados e dos sinais de controle, de 

modo que a rede neural possa aprender as não-linearidades do manipulador. Portanto, 

 

 𝜙(𝑧𝑘) = 𝑧𝑘 ⊗ 𝑧𝑘  , (21) 

 

em que 

 

 𝑧𝑘 = [𝑢𝑘
𝑇 𝑒𝑘

𝑇 𝑒𝑘1
2 𝑒𝑘2

2 𝑒𝑘3
2 𝑒𝑘4

2 𝑥𝑘1
2 𝑥𝑘2

2 𝑥𝑘3
2 𝑥𝑘4

2 ]𝑇 (22) 

 

de modo que  𝑒𝑘 = [𝑒𝑘1 𝑒𝑘2 𝑒𝑘3 𝑒𝑘4]𝑇 = 𝑥𝑘 − 𝑑𝑘 é o erro de rastreamento. Desta maneira, a Rede 

Neural Artificial (RNA) a ser implementada possui 105 neurônios.  

A função 𝑄̂ toma a forma 

 

 𝑄̂𝑖(𝑥𝑘 , 𝑢𝑘, 𝑑𝑘 , 𝑤𝑖) = 𝑤𝑖,1
𝑇 𝜑1(𝑧𝑘) + 𝑤𝑖,21

𝑇 𝜑2(𝑧𝑘)𝑢𝑘1 + 𝑤𝑖,22
𝑇 𝜑2(𝑧𝑘)𝑢𝑘2 + 𝑤𝑖,31𝑢𝑘1

2 + 𝑤𝑖,32𝑢𝑘2
2 , (23) 

 

onde 𝜙(𝑧𝑘) = [𝜑1
𝑇(𝑧𝑘) 𝜑2

𝑇(𝑧𝑘)𝑢𝑘1 𝜑2
𝑇(𝑧𝑘)𝑢𝑘2 𝑢𝑘1

2 𝑢𝑘2
2 ]𝑇  é decorrente da equação (21). 

Especificamente, os elementos que compõem 𝜑1(⋅) e 𝜑2(⋅) são independentes de 𝑢𝑘1 e 𝑢𝑘2. 



 
  

 
 

Aplicando a equação (16) para determinar a política de controle, temos 

 

𝜕𝑄̂𝑖(𝑥𝑘 , 𝑢𝑘 , 𝑑𝑘, 𝑤𝑖)

𝜕𝑢𝑘1

= 𝑤𝑖,21
𝑇 𝜑2(𝑧𝑘) + 2𝑤𝑖,31𝑢𝑘1 = 0 

 𝑢𝑘1 = −
1

2𝑤𝑖,31

𝑤𝑖,21
𝑇 𝜑2(𝑧𝑘) (24) 

𝜕𝑄̂𝑖(𝑥𝑘 , 𝑢𝑘 , 𝑑𝑘, 𝑤𝑖)

𝜕𝑢𝑘2

= 𝑤𝑖,22
𝑇 𝜑2(𝑧𝑘) + 2𝑤𝑖,32𝑢𝑘2 = 0 

 𝑢𝑘2 = −
1

2𝑤𝑖,32

𝑤𝑖,22
𝑇 𝜑2(𝑧𝑘). (25) 

 

Reorganizando na forma matricial, a política de controle pode ser escrita como 

 

 ℎ𝑖(𝑥𝑘 , 𝑑𝑘) = −
1

2
[
𝑤𝑖,31 0

0 𝑤𝑖,32
]

−1

[
𝜑2

𝑇(𝑧𝑘) 𝟎𝟏×𝟏𝟐

𝟎𝟏×𝟏𝟐 𝜑2
𝑇(𝑧𝑘)

] 𝑤𝑖,2, (26) 

 

em que 𝑤𝑖,2 = [𝑤𝑖,21
𝑇 𝑤𝑖,22

𝑇 ]
𝑇

. 

Em aprendizado por reforço, o ator é o agente que gera a política de controle, ou seja, o ator é descrito 

matematicamente pela equação (26). Já o crítico, é descrito pela equação (23). 

 

4.2 ALGORITMO DE APRENDIZADO ONLINE ATOR-CRÍTICO  

Um aspecto relacionado à abordagem ator-crítico é que as estimativas da função 𝑄 de uma dada 

política de controle são atualizadas a cada passo de tempo 𝑘 usando dados observados do sistema (estados 

do manipulador). Para tanto, será utilizado o algoritmo iterativo dos mínimos quadrados recursivos 

(Recursive Least-Squares - RLS) para a estimação do vetor de pesos 𝑤𝑖. A eficiência do método RLS no 

aprendizado online é principalmente devido à sua robustez para lidar com variações nos parâmetros de 

regressão e a rápida convergência (Ferreira; Rêgo; Neto, 2017).  

Portanto, aplicando o algoritmo RLS, a estimativa dos pesos da RNA, a cada passo de tempo 𝑘, é 

dada por  

 

 𝑤𝑘+1 = 𝑤𝑘 + 𝐾𝑘𝛿𝑘 (27) 

 𝐾𝑘 =
𝑃𝑘𝜙(𝑧𝑘)

𝜆 + 𝜙(𝑧𝑘)𝑇𝑃𝑘𝜙(𝑧𝑘)
 (28) 

 𝑃𝑘+1 =
1

𝜆
[𝑃𝑘 −

𝑃𝑘𝜙(𝑧𝑘)𝜙(𝑧𝑘)𝑇𝑃𝑘

𝜆 + 𝜙(𝑧𝑘)𝑇𝑃𝑘𝜙(𝑧𝑘)
], (29) 

 

sendo  𝜆, 0 < 𝜆 ≤ 1, o fator de esquecimento e 𝑃𝑘 é a matriz de correlação inversa.  

O esquema de aprendizado por reforço empregado neste trabalho exige uma política de controle 

inicial estável. A finalidade é manter o controlador estável durante os instantes iniciais até que o agente 



 
  

 
 

adquira experiência suficiente (observando o ambiente) para que uma nova política possa ser calculada. Por 

simplificação, os ganhos da rede neural devem ser inicializados de modo a resultar em um controlador PD 

(Proporcional-Derivativo) discreto. Este pode ser implementado modificando os pesos da equação (26), 

onde observa-se que: 

 

 𝜑2(𝑧𝑘) = [𝑒𝑘1 𝑒𝑘2 𝑒𝑘3 𝑒𝑘4 𝑒𝑘1
2 𝑒𝑘2

2 𝑒𝑘3
2 𝑒𝑘4

2 𝑥𝑘1
2 𝑥𝑘2

2 𝑥𝑘3
2 𝑥𝑘4

2 ]𝑇 , (30) 

 

ou seja, ℎ(𝑥𝑘, 𝑑𝑘) depende diretamente dos erros de posição e velocidade dos elos. Posto isto, constata-se 

que facilmente pode-se obter um controle PD estabelecendo, por exemplo, 

 

 𝑤𝑖,31 = 𝑤𝑖,32 =
1

2
 , 

𝑤𝑖,21 = [𝐾𝑃1
0 𝐾𝐷1

0 0 0 0 0 0 0 0 0]𝑇 , 

𝑤𝑖,22 = [0 𝐾𝑃2
0 𝐾𝐷2

0 0 0 0 0 0 0 0]𝑇 , 

(31) 

 

onde 𝐾𝑃1
 e 𝐾𝐷1

, e 𝐾𝑃2
 e 𝐾𝐷2

 são os ganhos proporcional e derivativo, respectivamente, das juntas 1 e 2. O 

ajuste desses parâmetros será realizado por tentativa e erro.  

Um resumo do algoritmo de aprendizado por reforço ator-crítico implementado neste estudo é 

apresentado a seguir.  

 

Tabela 1 

Algoritmo RL Ator-Crítico 

Entrada: fator de desconto 𝛾, fator de aprendizado 𝛼, valor inicial da matriz de covariância 𝛽 e o fator de esquecimento 𝜆. 

Inicialize os pesos da rede neural de forma a garantir um controlador PD estável. Meça os estados 𝑥0 e os erros de trajetória 

𝑒0 iniciais.  Inicialize as matrizes 𝑃0 = 𝛽𝐼, 𝑄𝑐, 𝑅 e 𝑆 arbitrariamente e 𝑖 = 0. 

Repita para cada amostra dos estados 𝑘 = 0,  1,  2, … 

  Sinal de ruído como componente de exploração 

𝜉 = [ ] 
 Sinal de controle 

𝑢𝑘 = ℎ𝑖(𝑥𝑘 , 𝑑𝑘) + 𝜉 

Aplique 𝑢𝑘 e meça os estados 𝑥𝑘+1 

𝑢𝑘+1 = ℎ𝑖(𝑥𝑘+1, 𝑑𝑘+1) 

𝑒𝑘+1 = 𝑥𝑘+1 − 𝑑𝑘+1 

𝑟𝑘 = 𝑒𝑘
𝑇𝑄𝑐𝑒𝑘 + (𝑢𝑘+1 − 𝑢𝑘)𝑇𝑆(𝑢𝑘+1 − 𝑢𝑘) + 𝑢𝑘

𝑇𝑅𝑢𝑘 

 Mínimos quadrados recursivos - RLS 

Δ𝑜𝑏𝑗𝑒𝑡𝑖𝑣𝑜 = 𝑟𝑘 + 𝛾𝑄̂(𝑥𝑘+1,  𝑢𝑘+1,  𝑒𝑘+1) 

𝑊̂𝑘 = 𝑤𝑘
𝑇𝜙𝑘 

𝐾𝑘 =
𝑃𝑘𝜙𝑘

𝜆 + 𝜙𝑘
𝑇𝑃𝑘𝜙𝑘

 

𝑤𝑘+1 = 𝑤𝑘 + 𝐾𝑘(Δ𝑜𝑏𝑗𝑒𝑡𝑖𝑣𝑜 − 𝑊̂𝑘) 

𝑃𝑘+1 =
1

𝜆
(𝑃𝑘 −

𝑃𝑘𝜙𝑘𝜙𝑘
𝑇𝑃𝑘

𝜆 + 𝜙𝑘
𝑇𝑃𝑘𝜙𝑘

) 

Se fim de um período de aprendizado: 

𝑤𝑖+1(𝑐𝑡𝑟𝑙) = 𝛼𝑤𝑘+1 + (1 − 𝛼)𝑤𝑖(𝑐𝑡𝑟𝑙) 

Atualização da política de controle 

ℎ𝑖+1 ← −
1

2
[
𝑤𝑖+1(𝑐𝑡𝑟𝑙),31 0

0 𝑤𝑖+1(𝑐𝑡𝑟𝑙),32
]

−1

[
𝜑2

𝑇(𝑧𝑘) 𝟎𝟏×𝟏𝟎

𝟎𝟏×𝟏𝟎 𝜑2
𝑇(𝑧𝑘)

] 𝑤𝑖(𝑐𝑡𝑟𝑙),2 



 
  

 
 

𝑃𝑘+1 = 𝛽𝐼 

𝑖 = 𝑖 + 1 

fim-se 

até satisfazer o critério de parada 

 

Fonte: Autores. 

 

O algoritmo inicia-se com os ganhos da RNA definidos arbitrariamente para produzir o efeito de um 

controle PD. Considerou-se a condição inicial da matriz de correlação inversa do RLS dada na forma 𝑃0 =

𝛽𝐼, em que 𝛽 é uma constante com valor suficientemente grande e 𝐼 é a matriz identidade. Durante os 

primeiros instantes, não há atualização na política de controle para garantir a estabilidade durante o 

aprendizado inicial, entretanto o vetor de pesos 𝑤𝑘 é calculado a cada passo aplicando as equações (27) a 

(29). O sinal de controle é obtido em cada instante de tempo 𝑘 usando (26). Um sinal de ruído 𝜉, conhecido 

como ruído de exploração, é adicionado na entrada de controle com o propósito de aprendizado online 

(Jiang; Jiang, 2017). Ao fim desse período, os pesos do controlador são atualizados, iniciando-se um novo 

período de aprendizagem. Para fornecer robustez ao algoritmo, a atualização dos parâmetros da política é 

obtida por 

 

 𝑤𝑖+1(𝑐𝑡𝑟𝑙) = 𝛼𝑤𝑘+1 + (1 − 𝛼)𝑤𝑖(𝑐𝑡𝑟𝑙), (32) 

 

onde 𝑤𝑖(𝑐𝑡𝑟𝑙) são os parâmetros do controlador implementado durante o 𝑖-ésimo ciclo, 0 < 𝛼 ≤ 1 é o fator 

de aprendizado. Nesse instante, a matriz 𝑃 é redefinida. Os pesos do controlador são novamente mantidos 

inalterados até que o ciclo em curso tenha se concluído. O processo é repetido até a convergência dos 

parâmetros da rede. Alcançado este objetivo, o controlador opera com pesos constantes.  

 

5 ESTRUTURA DE SIMULAÇÃO 

De modo a fornecer uma estrutura de simulação que permita desenvolver os algoritmos e realizar os 

experimentos foi utilizado o software V-REP (Virtual Robotics Experimentation Plataform) em conjunto 

com o MATLAB (Matrix Laboratory). O V-REP é um simulador para robôs de propósito geral que fornece 

vários motores de física para as simulações, diversos modelos robóticos e múltiplas configurações do 

ambiente. Desta forma, é possível personalizar todos os objetos da cena, incluindo os parâmetros dos 

sensores e atuadores, permitindo assim atingir resultados mais fiéis (Rohmer; Singh; Freese, 2013). 

No V-REP são disponibilizados diferentes meios de controlar os objetos/modelos na cena, seja 

através de rotinas embarcadas, nós do ROS (Robot Operating System) (Quigley; Gerkey; Smart, 2015), API 

(Application Programming Interface) remota, um plugin ou alguma solução personalizada. Os 

controladores podem ser escritos em C/C++, Python, Java, Lua e MATLAB (Shamshiri et al., 2018). Neste 

estudo, o modelo robótico usado no simulador é controlado por uma rotina externa desenvolvida na 



 
  

 
 

plataforma MATLAB fazendo uso da API remota. A Figura 3 ilustra a comunicação entre o controlador e 

o ambiente de simulação.  

As configurações a serem seguidas para o funcionamento adequado das simulações usando as 

plataformas descritas acima e dentro do contexto de aprendizado por reforço podem vistas em detalhes em 

(Pluškoski; Ciganović; Jovanović, 2019). 

 

Figura 3. Esquema de controle do V-REP por API remota via MATLAB. 

 
Fonte: Elaborado pelos autores. 

 

6 RESULTADOS DE SIMULAÇÃO 

Nesta seção, os resultados das simulações do esquema de controle proposto neste trabalho são 

apresentados e discutidos. Para execução desses experimentos computacionais foi utilizado o modelo do 

braço robótico UR10 disponível no simulador V-REP. Visto que este articulador possui seis graus de 

liberdade, nestes ensaios o torque gerado pela lei de controle será aplicado apenas nas juntas do ombro e do 

cotovelo (Figura 4) enquanto as demais juntas são desativadas e bloqueadas em suas respectivas posições 

de equilíbrio (0º). O controle foi realizado utilizando a API remota através de rotinas implementadas na 

plataforma MATLAB.  

 

Figura 4. Juntas do manipulador UR10. 

 
Fonte: Elaborado pelos autores. 

 



 
  

 
 

A avaliação do esquema de controle via aprendizado por reforço será feita pela análise dos resultados 

de simulações de três tarefas: regulação, seguimento de trajetória de um sinal de múltiplos degraus e um 

sinal senoidal. 

O comportamento dos estados para o caso de regulação é apresentado na Figura 5. A configuração 

inicial das juntas foi definida como 𝑥0 = [𝜋 6⁄ 𝜋 3⁄ 0 0]𝑇 e os parâmetros do controlador foram 

ajustados para os seguintes valores 𝐾𝑃1
= 𝐾𝑃2

= 150, 𝐾𝐷1
= 𝐾𝐷2

= 30, 𝛾 = 0,98, 𝑄𝑐 = 𝑑𝑖𝑎𝑔(250, 250,

0,001, 0,001), 𝑅 = 𝑑𝑖𝑎𝑔(0,0001, 0,0001), 𝛼 = 0,2 e 𝑃0 = 104𝐼78×78. O ciclo de aprendizado para esta 

simulação foi de 0,8 s. O esforço de controle aplicado nas juntas é apresentado na Figura 6 e a atualização 

dos pesos do ator é exibida na Figura 7.  

 

Figura 5. Trajetória dos estados. 

 
 

Figura 6. Sinal de controle. 

 



 
  

 
 

Figura 7. Atualização dos pesos da rede do ator. 

 
 

Na segunda experiência sugerida para validar o controlador implementado, foi utilizado um sinal de 

referência de múltiplos degraus, de modo a simular a tarefa de pegar e colocar (pick and place), comumente 

realizada por manipuladores. Para este experimento o estado inicial foi configurado em 𝑥0 =

[0 0 0 0]𝑇. Os parâmetros de controle foram os mesmos utilizados para o caso de regulação exceto 

para os valores seguintes 𝑄𝑐 = 𝑑𝑖𝑎𝑔(100, 100, 0,001, 0,001), 𝛼 = 0,1, 𝐾𝑃1
= 𝐾𝑃2

= 500, 𝐾𝐷1
= 𝐾𝐷2

=

50 e ciclo de aprendizado alterado para 2 s. Sob estes ajustes, a resposta de rastreamento, o torque aplicado 

nas juntas e a atualização dos pesos da rede do ator são apresentados nas Figuras 8 a 11.  

Como visto, as juntas são capazes de alcançar o sinal de referência com erros dentro dos limites 

aceitáveis e a estabilidade do sistema é mantida durante todo o tempo de simulação. É mostrado também 

que no instante de tempo de 20 s houve um aumento no sinal de controle causando um sobressinal 

indesejado, porém nos instantes seguintes, a partir da 15ª atualização da política (30 s), observou-se um 

aprimoramento no rastreamento em relação a política inicial (primeiros 2 s), consequência do aprendizado 

adquirido.  

 

 

 

 

 

 

 



 
  

 
 

Figura 8. Seguimento de trajetória da junta do ombro. 

 
 

Figura 9. Seguimento de trajetória da junta do cotovelo. 

 
  



 
  

 
 

Figura 10. Sinal de controle. 

 
 

Figura 11. Atualização dos pesos da rede do ator. 

 
 

No último experimento proposto, um sinal senoidal foi estabelecido como referência para as juntas 

do articulador sob os seguintes ajustes 𝑄𝑐 = 𝑑𝑖𝑎𝑔(200, 200, 0,001, 0,001), 𝐾𝑃1
= 4000, 𝐾𝑃2

= 2000, 

𝐾𝐷1
= 50,  𝐾𝐷2

= 20 e 𝛼 = 0,4. Os demais parâmetros foram configurados nos mesmos valores do 

experimento 2. Os resultados da simulação são observados nas Figuras 12 a 15. De acordo com as Figuras 

12 e 13, onde é mostrado o desempenho de rastreamento, observa-se o aprimoramento do seguimento de 

trajetória ao fim de cada ciclo de aprendizado (intervalos de 2 s). A partir do terceiro ciclo os erros de 



 
  

 
 

rastreamento se estabilizam dentro de limites toleráveis.  

 

Figura 12. Seguimento de trajetória da junta do ombro. 

 
 

Figura 13. Seguimento de trajetória da junta do cotovelo. 

 
 

 

 

 

 



 
  

 
 

Figura 14. Sinal de controle. 

 
 

Figura 15. Atualização dos pesos da rede do ator. 

 
 

7 CONCLUSÃO  

Neste trabalho foi proposto um esquema de controle baseado em aprendizado por reforço aplicado 

em um manipulador robótico, usando uma abordagem ator-crítico. Neste projeto, apenas uma rede neural 

foi treinada para aproximar a função 𝑄 usando apenas as medidas reais do sistema via o estimador RLS. A 

fim de fornecer robustez ao esquema, a atualização da política de controle, obtida pela minimização da 

função 𝑄, ocorre ao fim de um número fixo de iterações (ciclo de aprendizado), mantendo-se constante 



 
  

 
 

durante este intervalo. Para aproximar a função valor ação, uma rede neural polinomial foi utilizada, 

mostrando-se adequada para aprender as não linearidades do manipulador. Experimentos computacionais 

com o controlador apresentado foram realizados utilizando o modelo do robô UR10 no simulador V-REP. 

As simulações incluíram a realização da tarefa de regulação e seguimento de trajetória dos sinais senoidal e 

de múltiplos degraus. Nos resultados simulados, observou-se a estabilidade das variáveis de estado durante 

todo o tempo de simulação e a capacidade de rastreamento dos sinais de referência, mesmo sem o 

conhecimento explícito da dinâmica do manipulador. 
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