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RESUMO

As incertezas nos pardmetros de um manipulador robotico podem afetar, de forma significativa, o
desempenho do manipulador, ocasionando erros de regime e de seguimento de trajetoria. Controladores
adaptativos apresentam-se como uma boa alternativa para esses sistemas, pois possuem como principal
caracteristica a capacidade de aprenderem online usando estimacgdo de parametros em tempo real. No
entanto, controladores adaptativos ndo sdo geralmente projetados com a qualidade de serem 6timos com
respeito aos critérios de desempenho especificados e, desta forma, ndo sdo viaveis para aplicagdes onde o
uso otimo de recursos ¢ altamente desejavel, como por exemplo em robos humanoides e robds de servigos.
Este artigo apresenta o projeto e investigacdao de desempenho de um controlador que combina caracteristicas
de controle adaptativo e controle 6timo para um manipulador robdtico. Especificamente, o esquema de
controle proposto ¢ implementado como uma estrutura ator-critico, a qual esta inserida no contexto de
aprendizado por reforgo, caracterizando este projeto como uma abordagem independente do modelo da
planta. Em contraste a outros sistemas ator-criticos em que sao usadas duas redes neurais independentes,
uma para aproximar a funcdo valor, e a outra para aprender acdes de controle, neste esquema, se define uma
unica rede neural, o que reduz o numero de pardmetros a serem estimados. Os resultados de simulacgao
demonstram o desempenho desejado do controlador proposto que atua em um manipulador de juntas
rotativas com dois graus de liberdade.

Palavras-chave: Manipulador Robotico. Controle Adaptativo. Controle Otimo. Aprendizado por Reforgo.
Esquema Ator-Critico.

1 INTRODUCAO

O desenvolvimento de estratégias de controle para manipuladores roboéticos apresenta dificuldades
decorrentes das proprias caracteristicas do sistema, isto €, um robo articulador ¢ um sistema dindmico
multivaridvel, com fortes ndo-linearidades devidas aos acoplamentos de suas juntas e movimentos, além de
apresentar parametros incertos ou que variam no tempo, tais como a massa e inércia dos elos, atritos ou

folgas nas engrenagens das juntas, variagdes nas cargas de trabalho, localizagdo do centro de massa (que



\

pode mudar quando o robd estiver com carga), entre outras (Fateh; Fateh, 2019). Estas imprecisdes
paramétricas resultam em perdas de exatiddao e velocidade nos movimentos do manipulador, que em
determinadas aplica¢des ¢ altamente indesejavel. J& a dindmica nao-linear pode levar o sistema a
instabilidade em determinados pontos de operacao (Craig, 2021).

Controladores convencionais de realimentacado, tal como o PID (Proporcional-Integral-Derivativo),
sdo vastamente utilizados na industria por serem simples, faceis de implementar e por apresentarem bom
desempenho em diversas aplicacdes (Borase ef al., 2021). Entretanto, este esquema de controle, por ser um
tipo de controle com ganhos fixos, torna-se insuficiente quando aplicado a sistemas com nao linearidades
e/ou incertezas (parametros imprecisos, dindmicas nao-modeladas de alta frequéncia e perturbagdes), ou
seja, sistemas que apresentam pontos de operacdo varidveis (Konstantopoulos; Baldivieso-Monasterios,
2020).

Dentre os controladores classicos aplicados a manipuladores existem aqueles baseados em modelo
(cinematico e/ou dinamico para controle de posicdo, velocidade e forga). Porém, estas abordagens
necessitam do conhecimento completo das equacdes que descrevem o comportamento do sistema, sendo
elas bastante complexas e com parametros que muitas vezes sao incertos. A complexidade do modelo cresce
também com o aumento de juntas e elos do manipulador, aumentando o custo computacional para solucionar
estas equagdes (Moosavi; Zafar; Sanfilippo, 2022).

A teoria de controle adaptativo fornece meios para desenvolver solugdes para sistemas dinamicos
que demandam controladores mais complexos. Esta abordagem permite compensar, de forma online, as
variagdes e incertezas paramétricas do sistema garantindo que os critérios de desempenho desejados sejam
alcancados (Sun ef al., 2020). Tradicionalmente, os métodos de controle adaptativo podem ser divididos em
duas abordagens: controle indireto e controle direto (Qi; Tao; Jiang, 2019). Em controle indireto, a
estimagdo dos parametros do sistema precede a geragao de uma entrada de controle. Em controle direto, os
parametros do controlador sdo diretamente ajustados sem a necessidade das equagdes que regem o
comportamento do sistema.

Na literatura de Controle Adaptativo encontram-se diversos estudos € métodos aplicados ao controle
de trajetoria de manipuladores roboticos. Dubowsky e Desforges (1979) sdao os pioneiros em empregar
técnicas de controle adaptativo em robds articulados. A abordagem usada por estes pesquisadores foi o
Sistema Adaptativo por Modelo de Referéncia (Model Reference Adaptive System - MRAS). Resultados
praticos também mostraram os beneficios das abordagens baseadas nas técnicas self-tuning e backstepping
em relagdo ao controle convencional com ganhos fixos (Clegg; Dunnigan; Lane, 2001) (Sasaki ef al., 2009)
(Hu; Xu; Zhang, 2012). Abordagens hibridas também foram exploradas (Maliotis, 1991) (Al-Olimat;
Ghandakly, 2002) (Chen, 2005) (Algaudi et al., 2016) (Zhang; Wei, 2017). Em (Wu; Yan; Cai, 2019) (Fateh;
Fateh, 2019) (Yilmaz et al., 2022) (Freire; Rossomando; Soria, 2018) sdo propostos projetos de controle
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adaptativo baseados em técnicas de inteligéncia artificial, tais como redes neurais e logica fuzzy, que sio
capazes de compensar as incertezas do modelo de um robd manipulador.

Apesar das técnicas de controle adaptativo terem alcangado sucesso em muitas aplicagdes, um
aspecto que deve ser observado ¢ que os projetos de controladores resultantes desses métodos, em geral,
tém sido estruturados sem considerar a otimizagdo da acdo de controle e, desta forma, ndo sdo viaveis para
aplicagdes onde o uso de estratégias Otimas de controle ¢ requerida, como por exemplo em robos
humanoides/robos de servigos (Khan et al., 2012). Nesse caso, uma abordagem conjunta das técnicas de
controle adaptativo e controle 6timo ¢ desejada. Controle 6timo consiste basicamente em determinar uma
lei de controle de maneira a minimizar um critério de desempenho desejado. No contexto da robotica,
critérios de desempenho podem envolver a energia ou forca para a execu¢do do movimento, a0 mesmo
tempo que devem ser satisfeitas as restricdes fisicas do sistema, tais como limites dos atuadores ou das
juntas.

Muitos esforgos na teoria de controle de sistemas estdo atualmente concentrados em uma area do
aprendizado de maquina baseada nos estudos do comportamento animal e psicologia cognitiva, chamada
Aprendizado por Reforco (Reinforcement Learning - RL), que visa incorporar caracteristicas de sistemas
bioldgicos para o tratamento de sistemas com incertezas, introduzindo diversos termos, tais como adaptagao,
aprendizado, reconhecimento de padrdes e auto-organizacao (Guo; Yan; Cui, 2020) (Yaghmaie; Gustafsson;
Ljung, 2023) (Chen; Dai; Dong, 2024a) (Chen; Dong; Dai, 2024b) (Zhao et al., 2025) (Su et al., 2025)
(Wang et al., 2025). O tema central na pesquisa de RL € o projeto de algoritmos que aprendem politicas de
controle 6timas através do conhecimento apenas de amostras de transi¢cao dos estados ou trajetorias, que sao
coletadas antecipadamente ou pela interagao em tempo real com o sistema.

M¢étodos Ator-Critico constituem uma classe de técnicas de aprendizado por refor¢o que consistem
essencialmente de duas estruturas paramétricas independentes (por exemplo, redes neurais), uma para
representar a politica de controle, denominada Ator, e a outra estrutura de rede € para representar a fungao
valor, chamada Critico (Sutton; Barto, 2018). O ator ¢ um agente que interage com o ambiente, ou seja, 0
ator € o controlador que estabelece ag¢des de controle, enquanto o critico avalia o efeito das agdes de controle
e fornece diretrizes sobre como melhorar a lei de controle.

Aprendizado por refor¢o pode ser visto em (Kiumarsi et a/, 2018) na perspectiva de um campo de
pesquisa promissor para o projeto de uma classe de controladores adaptativos com estrutura ator-critico que
aprendem online solugdes de controle 6timo sem fazer uso do modelo da dinamica do sistema (planta). Esta
abordagem resolve a equacao de otimizacao (equagao de Hamilton-Jacobi-Bellman - HIB) em uma maneira
"para frente no tempo" usando métodos de diferengas temporais, aproximag¢ao de fun¢des e melhorias de
politicas. Tais controladores sdo inspirados em estruturas neurais bioldgicas que fornecem capacidades para

lidar de forma eficaz com o grau de complexidade de sistemas ndo-lineares, incertos e parcialmente
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observaveis. Em (Kiumarsi et a/, 2018), sdo apresentadas as principais ideias e algoritmos de aprendizado

por refor¢co bem como suas aplicagdes em controle 6timo de sistemas dindmicos.

1.1 OBJETIVOS

O presente artigo tem por objetivo avaliar o potencial de um algoritmo de aprendizado por refor¢o
para resolver problemas de controle 6timo online da trajetéria de um manipulador robotico com espago de
estado continuo (espaco das juntas). Em contraste com a maioria dos algoritmos ator-critico reportados na
literatura (vide Secdo 2), em que se utilizam duas redes neurais, uma para aproximar a funcao valor, e a
outra para aprender a¢des de controle, o algoritmo proposto neste trabalho emprega uma arquitetura ator-
critico onde uma Uunica rede neural ¢ usada para aproximar a solu¢do da equag¢do HJB, o que reduz
significativamente o numero de parametros a serem estimados. Especificamente, neste esquema, agdes de
controle sdo calculadas de maneira exata por meio de um esquema de politica gulosa com respeito a funcao
valor, ao invés de se usar um aproximador paramétrico para representar a politica de controle. Experimentos
realizados em um braco robotico UR10 do simulador V-REP mostram que tal algoritmo aprende com
sucesso a lei de controle 6timo para as tarefas de regulagdo e rastreamento para diferentes sinais de

referéncia.

2 TRABALHOS CORRELATOS

Contribuicdes anteriores importantes para o projeto de controle fundamentado em RL incluem os
trabalhos de Peters e Schaal (2008a) (2008b), que investigaram diversos métodos de aprendizado por reforco
para robds humanoides. Esses métodos foram classificados em trés categorias: politica gulosa, gradiente de
politica “vanilla” e gradiente de politica natural. A abordagem Ator-Critico natural, que explora a
formulagdo do gradiente de politica natural, foi destacada pelos autores por apresentar melhores
propriedades de convergéncia. Uma extensdo desse estudo ¢ mostrada em (Bhatnagar et al., 2009).

Ja (Shah; Gopal, 2009) apresentaram uma abordagem de controle baseada em Aprendizado Q para
robos manipuladores em ambientes incertos e forneceram um estudo comparativo de diferentes métodos de
aproximacao de funcao, tais como fuzzy, redes neurais, arvore de decisdo € maquina de vetor de suporte.

Em (Khan et al., 2011, 2012), os autores enfatizaram aplicacdes de controladores RL em sistemas
robdticos e propuseram um esquema de controle adaptativo 6timo fundamentado em Aprendizado Q (Q-
Learning) e Programacdo Dinamica Aproximada. A estratégia foi implementada no braco de um robd
humanoide (Bristol Elumotion-Robotic-Torso II) considerando um caso sem restrigdes € outro com
restrigdes de movimento.

Em (Pane; Nageshrao; Babuska, 2016), os autores forneceram validacdo experimental de um

compensador baseado em aprendizado Ator-Critico para melhorar o desempenho de um robd manipulador.
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O método proposto dispensa a necessidade de aprender o modelo do sistema e pode ser utilizado em
qualquer controlador por realimentacao (PID, LQR etc.). A validagdo do método foi demonstrada através
de experimentos em um robo manipulador industrial com seis graus de liberdade para diferentes tipos de
trajetorias de referéncia. Uma extensao desse trabalho ¢ apresentada em (Pane et al., 2019).

A aplicacdo de controladores RL em manipuladores robodticos também ¢ mostrada em (Hu; Si, 2018).
Nesse trabalho, uma estratégia de Aprendizado Ator-Critico com observador de estado via rede neural foi
implementada para controlar um brago robotico com parametros desconhecidos e sujeito a zonas mortas
desconhecidas.

Khan et al. (2019) propuseram um controle de complacéncia adaptativo 6timo para um dispositivo
robotico de auxilio a locomogdo. O esquema de controle sugerido ¢ fundamentado em Aprendizado Q e
programacao dindmica aproximada. Esse esquema ¢ completamente independente de modelo dinamico e
emprega realimentacdo da posicao e velocidade da junta, bem como o torque detectado da junta (aplicado
pelo usudrio durante a caminhada) para controle de complacéncia. A eficiéncia do controlador ¢ testada em
simulagdo em um modelo de dispositivo robdtico de auxilio a locomogao.

Kamboj ef al. (2020) apresentaram uma estratégia de controle cineméatico 6timo em tempo discreto
para um manipulador usando a estrutura Ator-Critico. A metodologia exposta foi aplicada em um modelo
3D de um manipulador com seis graus de liberdade em experimentos realizados em um software de
simulacdo. Em seguida, implementou-se a estratégia em um robd real do mesmo modelo do simulado.

Em (He et al., 2021), os autores discutiram o projeto de controle e a valida¢do de experimentos de
um sistema de manipulador flexivel de dois elos. Uma estratégia de controle de aprendizado por reforco ¢
desenvolvida com base na estrutura ator-critico para atenuar vibragdes enquanto mantém o rastreamento da
trajetoria.

Um controlador de rastreamento baseado em Aprendizado Ator-Critico para um manipulador
também foi estudado por (Cao et al., 2023). Nesse trabalho, a técnica de modos deslizantes ¢ utilizada para
que a acdo obtida pelo esquema Ator-Critico garanta a convergéncia do erro de rastreamento em um tempo
fixo. Além disso, um compensador antiwindup foi projetado para lidar com os efeitos da saturacao do
atuador da junta.

Na literatura acima, a maioria dos algoritmos RL ator-critico sdo implementados utilizando duas
redes neurais, uma para aproximar a funcdo valor, e a outra para aprender agdes de controle. Para reduzir a
complexidade computacional associada com métodos ator-criticos, propde-se, no presente artigo, uma
arquitetura onde uma unica rede neural ¢ usada para aproximar a solucao de controle 6timo, o que reduz
significativamente o nimero de pardmetros a serem estimados. Especificamente, acdes de controle sdo
calculadas de maneira exata por meio de um esquema de politica gulosa com respeito a funcdo valor, ao

invés de se usar uma aproximagdo paramétrica para representar a politica de controle.
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Um manipulador robético, ou robd articulado, ¢ formado por um conjunto de corpos individuais

3 DESCRICAO DO SISTEMA MANIPULADOR ROBOTICO

conectados entre si formando uma cadeia cinematica capaz de realizar tarefas através da interagdo com o
ambiente (Craig, 2021). As duas partes fundamentais que compdem um robd articulado sdo os elos, ou
articulagdes, e as juntas. Os elos sdo as estruturas fisicas (rigidas ou flexiveis) que compdem o robd. Ja as
juntas sdo responsaveis por promover o movimento relativo entre as articulagdes por meio de acionadores
e sdo comumente classificadas de acordo com mobilidade que estas viabilizam. Os tipos mais comuns

encontrados na industria sdo as juntas rotacionais € as prismaticas.

Figura 1. Elos e Juntas de um robd articulado.

Junta 6
Elo®

Juntas =

Fonte: Abbas, 2018.

A Figura 1 ilustra uma sequéncia de elos e juntas de um brago robotico. As extremidades do robd
articulador sdo denominadas de base e efetuador. A base fica ligada ao primeiro elo e fixa o mecanismo em
algum ponto no espago de tarefas. O efetuador ¢ uma ferramenta conectada ao ultimo elo do articulador e ¢
por este ponto que ha a interacdo com o ambiente. O tipo de atuador instalado dependera da tarefa a ser

executada.

3.1 EQUACOES DINAMICAS DE UM MANIPULADOR ROBOTICO

A dinamica dos manipuladores estuda a relagao entre as forgas aplicadas nos atuadores das juntas e
o movimento do mecanismo. A formula¢do de Lagrange permite modelar o comportamento dinamico de
um corpo em termos das energias cinéticas e potenciais ao invés de considerar os momentos e forcas

aplicadas individualmente em cada junta. A equagdo de Lagrange ¢ expressa por
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_d/oLy oL |
E(a_q)_ 77 @
L(g,9) =K(q,9) - U(q), (2)

em que K(-) é a energia cinética e U(-) é a energia potencial armazenada no mecanismo. Essa equacdo é
escrita em termos das coordenadas generalizadas q do articulador e sua derivada ¢ no tempo. O termo T,
por sua vez, representa o vetor generalizado de forgas, incluindo as forgas e os torques aplicados no sistema.

Para um rob6é manipulador com n elos rigidos, a energia cinética pode ser escrita na forma

n
K@) =) ki 3)
i=0
1 TCi
ki = Emivgivci + E(l)i Iiwi , (4)

em que k; ¢ a energia cinética para o i-ésimo elo. Para cada elo, tem-se duas componentes, uma relacionada

a velocidade linear v¢;, e a outra, a velocidade angular w;, relativas ao centro de massa da respectiva
. ~ , Ciy =« . Co, .

articulacdo, com m; a massa do elo i, ¢ “'I; ¢ a matriz de inércia.

A energia potencial pode ser expressa como

Uq=i=Onui (5)
ui=migTPCi (6)

em que u; € a energia potencial para o i-¢simo elo, definida em termos da massa m;, do vetor de gravidade

g e dalocalizagio P¢; do centro de massa relativo a base.

Aplicando-se o lagrangeano L(+) na equagdo (1), pode-se reordenar os termos da expressao resultante

de modo a obter

7=M(q)G+N(q,q) + G(q), (7

em que M (q) é amatrizn X n de massa do manipulador, N(q, ¢) é um vetor de dimensdo n X 1 relacionado
as forcas de Coriolis e centripeta, e G(q) é um vetor n X 1 com os termos que envolvem a gravidade.

Desse modo, o modelo de um manipulador pode ser escrito na forma de Espaco de Estados por

[g] - [—M-l(qzv + G)] * [Mo‘l] v (8)

4 METODOLOGIA

No contexto de controle 6timo e aprendizado por reforco, a no¢ao de maximizar recompensas futuras
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ponderadas ¢ modificada para minimizar o custo de controle. Desta forma, o objetivo ¢ determinar uma lei

de controle ou politica de controle h*(xy, dy) = uy que minimize o indice de desempenho (fungio valor)

V(xg, die) = Z YR (g, g dy), )
i=k

onde x; € R™ ¢ o vetor de estado, u, € R™ ¢ o vetor de entrada de controle, dj, é o vetor de trajetoria
desejada, 0 < ¥y < 1 ¢ o fator de desconto, e r(-) é a fungdo de utilidade que retorna o custo de controle em
um passo de tempo. Uma fungao de utilidade razoavelmente geral em problemas de minimizacao de energia

¢ dada por:

T(xi,ui, dl) = f'(xi,di) + uLTRu,-, (10)

onde R ¢ uma matriz definida positiva. O vetor d; pode ser descrito como uma demanda de projeto, fazendo
com que () represente o custo para executar a tarefa desejada, como por exemplo, o custo de rastreamento.
Usando o principio da otimalidade de Bellman (Vrabie; Vamvoudakis; Lewis, 2013), o indice de

desempenho 6timo pode ser escrito como

V¥ (X, di) = U&E{n(r(xk:uk; die) + YV (Xiex1, dies))- (11)

Em aprendizado por refor¢o, uma variante da fungdo valor V (), chamada fungdo Q (ou fungio valor
acdo), ¢ usada. Tal fungdo tem uma aplicagdo apropriada nos projetos de controle em que o modelo da planta

nao esta disponivel. A fung¢do Q associada a uma politica de controle h ¢é definida por

Q" (xxy g, di) = (X Ug, die) + YV i1, digsn), (12)

e a fungdo Q oOtima satisfaz a seguinte equacao

Q" (xp, Upy di) = 1 (X, g, di) + VYV (Xpeie1s digsr)- (13)

Combinando as equacdes (11) e (13), a equagdo da otimalidade de Belmann em termos da fun¢do Q

¢ dada por

V*(xy, di) = n&%{n(Q*(xk' ukﬂdk)) (14)

e a politica de controle 6tima ¢ obtida por
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h*(xy, di) = argmin Q" (xy, uy, dy). (15)
ug

Supondo Q* suficientemente suave (diferenciavel), o sinal de controle pode ser obtido como solugao

da equagdo

0Q" (xy, Uk, di) _

S 0. (16)

4.1 ESTRATEGIA DE APRENDIZADO ONLINE ATOR-CRITICO

O esquema ator-critico descrito a seguir considera um sistema manipulador com dois graus de
liberdade, podendo ser estendido para manipuladores com n graus de liberdade. A lei de controle ¢
sintetizada no problema de rastreamento 6timo da posicao das juntas do manipulador. Em particular, x;, =
[Xk1 Xk2 Xk3  Xka]T é definido como o vetor de estado no instante de tempo k, onde x; = q; € X, =
q, sdo, respectivamente, a posi¢do angular da junta 1 e da junta 2, e xi3 = g € X4 = ¢, sdo, na ordem
devida, a velocidade angular da junta 1 e da junta 2. O sinal de controle, naturalmente, ¢ um vetor 2 X 1
onde u;, = 7 ¢ a for¢a aplicada nas juntas. Para o problema de rastreamento 6timo considerado, a fun¢do de

utilidade reduz-se a

Xk € W) = € Qe + (Wpers — W) ™S (U1 — ug) + ufRuy = 13, (17

em que Q, € R¥* R € R?*? ¢ § € R?*? sdo matrizes definidas positivas e diagonais.
No presente estudo, a estrutura paramétrica para aproximar a fungao @ assume a forma dada por

Ql(xk; ukl dkl Wl) = W1T¢(xk: uki dk)! (18)

em que w; € a i-ésima estimagdo do vetor de pesos da rede neural e ¢(-) € o vetor de fungdes de ativagio

ou fung¢des de base. Considera-se que o valor desejado para estimagdo do parametro w; ¢ dado por

Aopjetivo = T (Xp, €xy Ug) + ¥Qi (trer1s Uper 1, dies1) (19)

A Figura 2 ilustra a arquitetura da rede neural utilizada para estimar a fungdo Q,em que m = 4,n =
2 e p = 105. As fungdes ¢, j = 1, ..., p, sdo as componentes do vetor de fungdes de ativagdo resultantes
do produto de Kronecker dado na equagdo (21).

O vetor de pesos w; € calculado pela minimizacao, em um sentido dos minimos quadrados, do erro

de diferencial temporal, que ¢ definido por
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Figura 2. Arquitetura da rede neural utilizada para estimar a fungéo Q.
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Camada de entrada

Fonte: Elaborado pelos autores.
8 = 1ic + ¥ Qi (k1) Uiers i, W) — Qi (i, e, die, ). (20)

O vetor de funcdes de ativagdo ¢ construido por polindmios de ordem superior. Por simplificacdo,
¢(-) sera representado utilizando o produto de Kronecker @ com a exclusdo dos termos redundantes
(Vrabie; Vamvoudakis; Lewis, 2013). Esta exclusdo ¢ necessaria para que os elementos que compdem o
vetor de fungdes de base ¢ (-) tornam-se linearmente independentes. O objetivo ¢ inserir alguns elementos
quadraticos e termos de até quarta ordem dos erros de rastreamento, dos estados e dos sinais de controle, de

modo que a rede neural possa aprender as nao-linearidades do manipulador. Portanto,

d(z) =z Q 2z, (21)
em que

— [T LT L2 2 2 2 2 2 2 2T
zZe=[ux ex e € €z €ia Xin Xz Xiz  Xigal (22)

de modo que e, = [€k1 €k2 €k3 €ra]T = x; — dy é o erro de rastreamento. Desta maneira, a Rede
Neural Artificial (RNA) a ser implementada possui 105 neuronios.

A fungio Q toma a forma

Qi (o ug, dye, wy) = Wi7:1(P1 (z) + Wi7:21(ﬂz (Zr Uy + Wa202(Zi) U + Wiz UE; + Wy 32URs, (23)

onde ¢(z) = [p1(z) PLzwa 5@ we uly ull” ¢ decomrente da cquagio (21).

Especificamente, os elementos que compdem ¢4 () € ¢, () sdo independentes de uy; € Uy,.
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Aplicando a equagdo (16) para determinar a politica de controle, temos

a@i(xk'uk' dy, w;)

= W51902(2i) + 2w 31Uy = 0

Ouyy
Uy, = —mwgu‘l’z(zk) (24)
6@-(Xk, Uy, dk! W)
- 3 == WiTzz(Pz (z) + 2w 30Uy, = 0
U2
1
Upy = —ngzz(l’z (zi)- (25)

i,32

Reorganizando na forma matricial, a politica de controle pode ser escrita como

11wiz 07" ©3(z1)  O1x12
216" il @0

hitio di) = 0112 @3 (2) b2

Wi32

= Wi ol

em que Wiz = |Wi21 i22] -
Em aprendizado por reforgo, o ator é o agente que gera a politica de controle, ou seja, o ator ¢ descrito

matematicamente pela equagao (26). Ja o critico, € descrito pela equagdo (23).

4.2 ALGORITMO DE APRENDIZADO ONLINE ATOR-CRITICO

Um aspecto relacionado a abordagem ator-critico € que as estimativas da fun¢cdo @ de uma dada
politica de controle sdo atualizadas a cada passo de tempo k usando dados observados do sistema (estados
do manipulador). Para tanto, serd utilizado o algoritmo iterativo dos minimos quadrados recursivos
(Recursive Least-Squares - RLS) para a estimacao do vetor de pesos w;. A eficiéncia do método RLS no
aprendizado online ¢é principalmente devido a sua robustez para lidar com variagdes nos parametros de
regressao e a rapida convergéncia (Ferreira; R€go; Neto, 2017).

Portanto, aplicando o algoritmo RLS, a estimativa dos pesos da RNA, a cada passo de tempo k, ¢

dada por
Wit1 = Wi + Kk(Sk (27)
_ Ppp(zx)
b T 0@ P @) 9
1 P (2,)p(2,)" Py

P =—|p, — , 29
A R ET TR R Tey @
sendo 4,0 < A < 1, o fator de esquecimento e P, ¢ a matriz de correlacdo inversa.
O esquema de aprendizado por reforco empregado neste trabalho exige uma politica de controle

inicial estavel. A finalidade ¢ manter o controlador estavel durante os instantes iniciais até que o agente
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adquira experiéncia suficiente (observando o ambiente) para que uma nova politica possa ser calculada. Por
simplificagdo, os ganhos da rede neural devem ser inicializados de modo a resultar em um controlador PD
(Proporcional-Derivativo) discreto. Este pode ser implementado modificando os pesos da equagdo (26),

onde observa-se que:

_ 2 2 2 2 2 2 2 21T
©2(zK) = [ex1 ez €xs ks G iz €z Cia Xia Xiz Xiz Xial (30)

ou seja, h(xy, dy,) depende diretamente dos erros de posi¢do e velocidade dos elos. Posto isto, constata-se

que facilmente pode-se obter um controle PD estabelecendo, por exemplo,

1
Wisz1 = Wiz =7,
; T (31
Wiy =[Kp, O Kp, 0 0.0 0 0 0 0 0 0],
Wi,22=[0 Kp, 0 Kp, 0 0 0 0 0 0 0 077,

onde Kp, € Kp,, € Kp, € Kp, sdo os ganhos proporcional e derivativo, respectivamente, das juntas 1 € 2. O

ajuste desses parametros sera realizado por tentativa e erro.

Um resumo do algoritmo de aprendizado por refor¢o ator-critico implementado neste estudo ¢é

apresentado a seguir.

Tabela 1
Algoritmo RL Ator-Critico
Entrada: fator de desconto y, fator de aprendizado a, valor inicial da matriz de covaridncia f e o fator de esquecimento A.
Inicialize os pesos da rede neural de forma a garantir um controlador PD estavel. Mega os estados X, e os erros de trajetoria
e iniciais. Inicialize as matrizes Py = I, Q., R ¢ S arbitrariamente e i = 0.
Repita para cada amostra dos estados k = 0, 1, 2, ...
> Sinal de ruido como componente de exploragio
£=1]
[> Sinal de controle
U = hi(xp, di) +§
Aplique u;, e mega os estados x4
Ups1 = hiOepr, dieyr)
€r+1 = Xpa1 — Aa
Tie = e Qcer + (Wpesr — W)™ (Wi — W) + uf Ry
> Minimos quadrados recursivos - RLS
Dopjetivo = Tie + YO (Xis1, U1, €xs1)
W = wi ¢y
K, = P kg)k
A+ ¢ Py
Wier1 = Wi + Ki(Dopjetivo — W)
p L < _ Pubidin )
A A+ b Py
Se fim de um periodo de aprendizado:
Wisi(ctrt) = @Wiar + (1 — @)Wieerp
[>Atualizagio da politica de controle
hovr _1 Wit1(ctri)31 0 ] ! [‘P;(Zk) 01x10
i+l 2 0 Wit1(ctri),32 01510 @3 (2)

Wi(ctrD),2
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Pry1 = Bl
i=i+1
fim-se
até satisfazer o critério de parada

Fonte: Autores.

O algoritmo inicia-se com os ganhos da RNA definidos arbitrariamente para produzir o efeito de um
controle PD. Considerou-se a condi¢ao inicial da matriz de correla¢ao inversa do RLS dada na forma P, =
PB1, em que f ¢ uma constante com valor suficientemente grande e / ¢ a matriz identidade. Durante os
primeiros instantes, ndo ha atualizacdo na politica de controle para garantir a estabilidade durante o
aprendizado inicial, entretanto o vetor de pesos wy, ¢ calculado a cada passo aplicando as equagdes (27) a
(29). O sinal de controle ¢ obtido em cada instante de tempo k usando (26). Um sinal de ruido &, conhecido
como ruido de exploragdo, ¢ adicionado na entrada de controle com o propdsito de aprendizado online
(Jiang; Jiang, 2017). Ao fim desse periodo, os pesos do controlador sdo atualizados, iniciando-se um novo
periodo de aprendizagem. Para fornecer robustez ao algoritmo, a atualizacdo dos pardmetros da politica ¢

obtida por

Wisiceer) = AWie1 + (1 — Wiy, (32)

onde Wj(c¢rpy S80 0s pardmetros do controlador implementado durante o i-¢simo ciclo, 0 < a < 1 € o fator

de aprendizado. Nesse instante, a matriz P ¢ redefinida. Os pesos do controlador sdo novamente mantidos
inalterados até que o ciclo em curso tenha se concluido. O processo € repetido até a convergéncia dos

parametros da rede. Alcangado este objetivo, o controlador opera com pesos constantes.

5 ESTRUTURA DE SIMULACAO

De modo a fornecer uma estrutura de simulagdo que permita desenvolver os algoritmos e realizar os
experimentos foi utilizado o software V-REP (Virtual Robotics Experimentation Plataform) em conjunto
com 0 MATLAB (Matrix Laboratory). O V-REP ¢ um simulador para robds de propdsito geral que fornece
varios motores de fisica para as simulacdes, diversos modelos roboticos e multiplas configura¢des do
ambiente. Desta forma, ¢ possivel personalizar todos os objetos da cena, incluindo os pardmetros dos
sensores e atuadores, permitindo assim atingir resultados mais fié¢is (Rohmer; Singh; Freese, 2013).

No V-REP sao disponibilizados diferentes meios de controlar os objetos/modelos na cena, seja
através de rotinas embarcadas, ndés do ROS (Robot Operating System) (Quigley; Gerkey; Smart, 2015), API
(Application Programming Interface) remota, um plugin ou alguma solu¢do personalizada. Os
controladores podem ser escritos em C/C++, Python, Java, Lua e MATLAB (Shamshiri ez al., 2018). Neste

estudo, o modelo robdtico usado no simulador ¢ controlado por uma rotina externa desenvolvida na
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plataforma MATLAB fazendo uso da API remota. A Figura 3 ilustra a comunicacdo entre o controlador e

o ambiente de simulagao.

As configuragdes a serem seguidas para o funcionamento adequado das simula¢des usando as

plataformas descritas acima e dentro do contexto de aprendizado por refor¢o podem vistas em detalhes em

(Pluskoski; Ciganovi¢; Jovanovi¢, 2019).

Figura 3. Esquema de controle do V-REP por API remota via MATLAB.

I Computador Pessoal

Algoritmo de
Aprendizado por
Refor¢o

4 @\ MATLAB

Estados
x=lgql

Acdo
u

V-REP
API Remota

Posicado
G

Velocidade
q

Torque

Fonte: Elaborado pelos autores.

6 RESULTADOS DE SIMULACAO

Nesta se¢do, os resultados das simulagdes do esquema de controle proposto neste trabalho sdo

apresentados e discutidos. Para execucdo desses experimentos computacionais foi utilizado o modelo do

braco robotico UR10 disponivel no simulador V-REP. Visto que este articulador possui seis graus de

liberdade, nestes ensaios o torque gerado pela lei de controle serd aplicado apenas nas juntas do ombro e do

cotovelo (Figura 4) enquanto as demais juntas sdo desativadas e bloqueadas em suas respectivas posi¢des

de equilibrio (0°). O controle foi realizado utilizando a API remota através de rotinas implementadas na

plataforma MATLAB.

Figura 4. Juntas do manipulador UR10.

Cotovelo

Fonte: Elaborado pelos autores.
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dos pesos do ator ¢ exibida na Figura 7.
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A avaliagdo do esquema de controle via aprendizado por reforgo sera feita pela analise dos resultados

de simulacdes de trés tarefas: regulagdo, seguimento de trajetéria de um sinal de multiplos degraus e um

O comportamento dos estados para o caso de regulacao ¢ apresentado na Figura 5. A configuracao
inicial das juntas foi definida como xq = [r/6 w/3 0 0]7 e os parAmetros do controlador foram
ajustados para os seguintes valores Kp = Kp, = 150, K, = Kp, = 30,y = 0,98, Q. = diag(250, 250,
0,001, 0,001), R = diag(0,0001, 0,0001), @ = 0,2 ¢ Py = 10*I,5,5. O ciclo de aprendizado para esta

simulag¢do foi de 0,8 s. O esfor¢o de controle aplicado nas juntas ¢ apresentado na Figura 6 e a atualizagao
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Figura 7. Atualizacdo dos pesos da rede do ator.
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Na segunda experiéncia sugerida para validar o controlador implementado, foi utilizado um sinal de
referéncia de multiplos degraus, de modo a simular a tarefa de pegar e colocar (pick and place), comumente
realizada por manipuladores. Para este experimento o estado inicial foi configurado em x, =
[0 0 0 0]". Os pardmetros de controle foram os mesmos utilizados para o caso de regulacio exceto
para os valores seguintes Q. = diag(100,100,0,001,0,001), « = 0,1, Kp, = Kp, = 500, Kp, = K, =
50 e ciclo de aprendizado alterado para 2 s. Sob estes ajustes, a resposta de rastreamento, o torque aplicado
nas juntas e a atualizagdo dos pesos da rede do ator sdo apresentados nas Figuras 8 a 11.

Como visto, as juntas sdo capazes de alcangar o sinal de referéncia com erros dentro dos limites
aceitaveis e a estabilidade do sistema ¢ mantida durante todo o tempo de simulagio. E mostrado também
que no instante de tempo de 20 s houve um aumento no sinal de controle causando um sobressinal
indesejado, porém nos instantes seguintes, a partir da 15* atualizagdo da politica (30 s), observou-se um
aprimoramento no rastreamento em relagdo a politica inicial (primeiros 2 s), consequéncia do aprendizado

adquirido.



Figura 8. Seguimento de trajetoria da junta do ombro.
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Figura 10. Sinal de controle.
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Figura 11. Atualizag¢do dos pesos da rede do ator.
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No ultimo experimento proposto, um sinal senoidal foi estabelecido como referéncia para as juntas

do articulador sob os seguintes ajustes Q. = diag(200,200,0,001,0,001), Kp = 4000, Kp, = 2000,

Kp, =50, Kp, =20 ¢ a =0,4. Os demais pardmetros foram configurados nos mesmos valores do

experimento 2. Os resultados da simulacdo sdo observados nas Figuras 12 a 15. De acordo com as Figuras

12 e 13, onde ¢ mostrado o desempenho de rastreamento, observa-se o aprimoramento do seguimento de

trajetoria ao fim de cada ciclo de aprendizado (intervalos de 2 s). A partir do terceiro ciclo os erros de



rastreamento se estabilizam dentro de limites toleraveis.
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Figura 12. Seguimento de trajetoria da junta do ombro.
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Figura 14. Sinal de controle.

400 T T T T T T T T T

300 -

200

100

-100

Sinal de controle aplicado

=200 b

=300 .

-4-DD i i i i i i i i i
0 2 4 5] 8 10 12 14 16 18 20

time (s)

Figura 15. Atualizagdo dos pesos da rede do ator.

4000 T T T T T T T T

3500

3000

2500

2000

1500

1000

Pesos da Rede Neural Aplicados

500

—EDD 1 1 1 1 1 1 i i 1
o 2 4 G 8 10 12 14 16 18 20

time (s)

7 CONCLUSAO

Neste trabalho foi proposto um esquema de controle baseado em aprendizado por refor¢o aplicado
em um manipulador robdtico, usando uma abordagem ator-critico. Neste projeto, apenas uma rede neural
foi treinada para aproximar a funcdo Q usando apenas as medidas reais do sistema via o estimador RLS. A
fim de fornecer robustez ao esquema, a atualizagcdo da politica de controle, obtida pela minimizagdo da

funcdo @, ocorre ao fim de um numero fixo de iteragdes (ciclo de aprendizado), mantendo-se constante
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durante este intervalo. Para aproximar a fun¢do valor acdo, uma rede neural polinomial foi utilizada,
mostrando-se adequada para aprender as ndo linearidades do manipulador. Experimentos computacionais
com o controlador apresentado foram realizados utilizando o modelo do rob6 UR10 no simulador V-REP.
As simulagdes incluiram a realizagdo da tarefa de regulagdo e seguimento de trajetéria dos sinais senoidal e
de multiplos degraus. Nos resultados simulados, observou-se a estabilidade das varidveis de estado durante
todo o tempo de simulagdo e a capacidade de rastreamento dos sinais de referéncia, mesmo sem o

conhecimento explicito da dinamica do manipulador.
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