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ABSTRACT 

The production of particles in proton collision 

experiments provides fundamental information 

about the mechanisms of conversion of the initial 

energy of protons into a given number of secondary 

particles by measuring their Multiplicity 

Distribution in strong nuclear interactions. In this 

context, the Negative Binomial Model has been 

extensively used in theoretical studies and in 

parameterization of experimental information, 

making it important, therefore, to know the 

hypotheses involved in the elaboration of the 

model, in order to provide adequate application and 

interpretation of results. Thus, we make a 

discussion of the Negative Binomial Model based 

on the performance of a classical random 

experiment, which leads and assists in obtaining the 

analytical expression of the Probability Function. 

We also express the Probability Function in terms 

of the Gamma Function, the multiplicity variable 

and the mean multiplicity adopting a mathematical 

procedure not found in the specific literature. 

Implications of the application of the model in the 

study of Multiplicity Distributions in collisions 

between protons are discussed. 

 

Keywords: Multiplicity Distributions, Negative 

binomial distribution, Multiple Particle Production, 

Proton Collisions.

  

 

1 INTRODUCTION 

Protons are particles that make up the atomic nucleus and have a complex internal structure 

composed of other particles called quarks and gluons, which are some of the elementary particles that 

make up matter [1,2]. One of the purposes of understanding the structure of matter and its interactions, 

protons are accelerated into beams and collided at collision energies of the order of  109  - 1012 electron 

volts [2]. In this order of collision energy, quarks and gluons interact predominantly through the strong 

nuclear force [1,2] and one of the results of collisions between protons, and the consequent interactions 

between quarks and gluons, is the creation of a set of new particles, a process called multiple particle 

production [3]. In general, we denote the number of particles produced by () and denote their 

probability of production. In this article we discuss the set of particles produced in collisions between 

protons, which is a fundamental experimental physical quantity for understanding the mechanisms of 

strong nuclear interactions of quarks and gluons [3]. Experimental data on MD were made available 

through the CERN ISR experiments (1984), CERN UA5 Collaboration (1987-1989) and the E735 

experiment performed at Tevatron (1998) [4,5,6,7]. Currently, the Large Hadron Collider "𝑁"𝑁 =

2,4,6, … 𝑛. . . "𝑃(𝑁)"{𝑁, 𝑃(𝑁)}  (LHC), which is the largest particle accelerator in history [2], has made 
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new experimental information about DM available. Details about the experiments at the LHC can be 

found in the Refs. [2,8]. In order to understand the mechanisms of particle production  and with 

experimental data on DM in a wide range of collision energy, mathematical models and/or Probability 

Distributions are necessary to carry out studies and investigations [9,10,11,12,13,14,15,16]. In this 

context, the Negative Binomial Probability Distribution (DBN), also referred to as Pascal's 

Distribution, has been extensively used to study and parameterize DM's observed in proton-antiproton 

collision experiments [15,16,17]. The wide use of the Negative Binomial Model in several analyses 

motivated the development of this work, which has two main purposes. One of them is to present a 

didactic discussion of the Negative Binomial Model and, secondly, to encourage new research on 

multiplicities due to the relevance of the theme for the understanding of the dynamics of particle 

production. Thus, due to the didactic proposal of the work, in the next section we present necessary 

and directed concepts to define Probability Distribution, reviewing the Bernoulli Distribution with the 

purpose of defining the notation to be used and also discussing aspects about independence of events. 

In Section 3 we present and discuss our proposal to obtain the DBN, exploring a classic random 

experiment. We also express the analytical formula of DBN in terms of the Gamma Function and the 

variable, as often used in applications to describe Multiplicity Distributions. In Section 4, the final 

considerations are presented."𝑛" 

 

2 ON THE DEFINITION OF PROBABILITY DISTRIBUTION 

We assume that readers have knowledge of probability concepts such as random experiment, 

events, sample space, and classical definition for calculating probabilities. In probabilities work, we 

define the events and then calculate the probability of these events occurring using the classical 

definition for probability calculation [18,19]. Based on the example discussed in Ref. [18], consider 

the random experiment:  "toss of two honest coins", which has as its sample space the set {cc, cr, rc, 

rr}, where "c"  represents heads and "  r" tails. Calculating the probabilities of events:  

𝐴 =  Occurrence of no face; 

𝐵 =  Occurrence of a face;  

𝐶 =  Occurrence of two faces; 

Get: 

 

𝑃(𝐴) =
1

4
,  ,   .         (1)𝑃(𝐵) =

1

2
𝑃(𝐶) =

1

4
 

 

A formal mathematical procedure can be adopted for the calculation of these probabilities. This 

procedure consists of representing events by numbers instead of words. This can be done by 

introducing the concept of Random Variable (VA) and defined, in this specific example, as:𝑋 
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𝑋: Number of faces.                          (2) 

 

Since we are now interested in the representation of events by numbers, and no longer by words, 

we then observe that , can take the values = {0,1,2} to represent the events , and , and with the following 

correspondences:𝑋𝑋𝐴 𝐵𝐶 

𝑋 = 0 → Occurrence of no face (Event);𝐴 

𝑋 = 1 → Occurrence of a face (Event);𝐵 

𝑋 = 2 → Two-Faced Occurrence (Event).  𝐶 

In general notation we write: 

 

𝑋 = {𝑥1, 𝑥2, . . . . , 𝑥, … … }                       (3) 

 

to indicate the possible EV values. Schematically:𝑋 

 

Table 1 - Possible values for the random variable, defined in (2), and respective probability values. 𝑋 

𝑋 𝑃(𝑋) Corresponding event 

0 1/4 No face ()𝐴 

1 1/2 One face ()𝐵 

2 1/4 Two-faced ()𝐶 

 

In the two numerical columns of Table 1, we identified the set , which is called the Probability 

Distribution of VA [20], which is easy to represent graphically. We observed that the treatment of AV 

is naturally more comprehensive [18,20]. We have here a discussion aimed at introducing the concept 

of the Probability Function.{𝑋, 𝑃(𝑋)}𝑋 

 

2.1 PROBABILITY DISTRIBUTION - BERNOULLI MODEL  

The repetition of Bernoulli's successive essays is the source of several interesting theoretical 

problems [21], giving rise to other models such as the Binomial, Geometric and even the Negative 

Binomial. Thus, we address some relevant aspects that lead to obtain the analytical expression of the 

Probability Distribution Function in this model and also to define the notation to be used. Every random 

experiment in which we distinguish only two possible, and mutually exclusive, outcomes is called an 

experiment or Bernoulli assay. Mutually exclusive events are events that cannot occur together, . An 

example is the performance  of the random 𝐴⋂𝐵 = ∅experiment "flipping a coin", of  course, there 

are only two possible outcomes that are mutually exclusive, i.e., the occurrence of heads excludes the 
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possibility of the occurrence of tails and vice versa. Now consider a single performance of any 

experiment classifiable as a Bernoulli experiment and in which we define, by convention, one of the 

results as success (S) and the other as failure (F). We indicate the value of the probability of success 

by the digit and the value of the probability of failure by 𝑝𝑞. Because they are mutually exclusive 

events, it follows that . As an example, we use the aforementioned experiment, 𝑝 + 𝑞 = 1"flip a coin",  

we define the occurrence of heads as success (with probability) and the occurrence of tails as failure 

(). Note that the definition of success is arbitrary. As mentioned, the VA should numerically express 

the possible outcomes and can be defined in the Bernoulli model [18] as:𝑝 = 1 2⁄ 𝑞 = 1 2⁄  

 

𝑋: Number of successes in a single performance of a Bernoulli experiment.   (4) 

 

Since the experiment is performed only once, the VA assumes the values equal to 1 and 0, where 

it indicates the occurrence of the successful result and indicates the occurrence of failure. Thus we can 

write𝑋𝑋 = 1𝑋 = 0𝑋 = {0,1}: P(S)=)= and  𝑃(𝑋 = 1P(F)= 𝑝= 𝑃(𝑋 = 0), 𝑞 in tabular form: 

 

Table 2 – Tabular representation of the results of a Bernoulli experiment. 

𝑋 𝑃(𝑋) 

0 𝑞 

1 𝑝 

 

The analytic expression representing the Probability Function in the Bernoulli model is then 

written in the form: 

 

𝑃(𝑋 = 𝑥) = 𝑝𝑥𝑞1−𝑥,                          (5) 

 

naturally producing the values indicated in Table 2. Note that the Probability Function is defined as 

the function that assigns to each value assumed by the AV the probability of the corresponding event 

[18]. 

 

2.2 INDEPENDENT EVENTS AND MULTIPLICATION OF PROBABILITIES 

The multiplication of the values of the probabilities, and , which can result from the 

independence between several realizations of the same random experiment, is a necessary condition 

for the deduction of the analytical expression of the Probability Distribution Function in the Negative 

Binomial Model, from a generalization of the Bernoulli Model. In general, discussions involving 

independence between events are addressed along with discussions about conditional probability 

[18,19]. Thus, consider two events and e that belong to the same sample space. A conditional 
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probability of the event occurring is defined by knowing that the event 𝑝𝑞𝐴𝐵𝐴has occurred,  denoted 

by , in the form [19]: 𝐵𝑃(𝐴 𝐵⁄ ) 

 

𝑃(𝐴 𝐵⁄ ) =
𝑃(𝐴⋂𝐵)

𝑃(𝐵)
,                                (6) 

 

where denotes the probability of intersection between the events and [19], i.e., denotes the probability 

of the event and event occurring. 𝑃(𝐴⋂𝐵)𝐴𝐵𝐴  and denote probabilities of occurrence of the events 

and , such that in (6). 𝐵𝑃(𝐴)𝑃(𝐵)𝐴𝐵𝑃(𝐵) ≠ 0 

As an example of applying conditional probability, consider the random experiment "roll a 

dice", where we define the events: 

𝐴 = Exit number 4; and 

𝐵 = Exit even number. 

The calculation  of the conditional probability results 3
1)/( =BAP , meaning the probability of 

rolling the number 4 knowing that an even number occurred on the roll of the dice. We now note that 

an important consequence of the definition of conditional probability is obtained by writing  the 

expression (6) in the form [19]: 

 

𝑃(𝐴⋂𝐵) = 𝑃(𝐴 𝐵⁄ ). 𝑃(𝐵).                   (7) 

 

The expression (7) is also referred to as the "Probability Multiplication Theorem" [19]. 

Regarding independence, two events  A  and  B  are independent if the information on the occurrence 

of B does not change the probability attributed to event A [19,20], as follows: 

 

𝑃(𝐴 𝐵⁄ ) = 𝑃(𝐴).                                 (8) 

 

Substituting (8) into (7) formally defines [18,19] that events A  and B are independent if, and 

only if, 

 

𝑃(𝐴⋂𝐵) = 𝑃(𝐴). 𝑃(𝐵).                        (9) 

 

The last expression means that the probability  of an event A and an event B, being independent, 

is calculated by the product of the probabilities of the occurrence of these events. A Eq. (9) It is 

generalized to the case where we have the occurrence of several independent events. Therefore, if the 

events  A1, A2,......,Am, are independent [18] then: 
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).()........().()( 211 m

m

i i APAPAPAP =
=     (10) 

 

It is worth noting that if two  events A  and  B are  mutually exclusive, then they are dependent 

events, for if A occurs,  event B does not occur. That is, the occurrence of one event conditions the 

non-occurrence of the other event [18]. 

 

3 PROBABILITY FUNCTION - NEGATIVE BINOMIAL MODEL AND APPLICATION 

In this Section, we obtain the Probability Function in the Negative Binomial model, supported 

by the elements presented in the last Section. We used the analogy with performing a simple random 

experiment to exemplify some stages of the model's elaboration. 

 

3.1 COIN FLIPS AND THE PROBABILITY FUNCTION 

Consider several repetitions of the  "flip a fair coin" experiment. As discussed in 2.1, each 

release is a Bernoulli experiment and there are, of course, two possible and mutually exclusive 

outcomes. In the previous section, we defined success as the occurrence of heads with probability 

value, which remains constant in each repetition of the experiment, and failure, the occurrence of tails 

with probability. Now consider that among the various possible repetitions of the experiment we wish 

to obtain two successes and we have adopted the letter for this indication. This means that we want to 

get 2 successes (2 heads) in several repetitions of the random 𝑝𝑞𝑘𝑘 = 2experiment "flip an honest 

coin". If we attribute to AV the meaning: 𝑋"number of times we must repeat the experiment until we 

obtain 2 successes", we have to assume the numerical values: 𝑋 

 

𝑋 = {2,3,4,5, . . . . . . }.                           (11) 

 

Of course, if we want to obtain successes the experiment will have to be repeated at least 2 

times, thus implying that the first possible value for the VA will be the number of desired successes, 

as indicated in (11). 𝑘 = 2The exemplified situation is generalized in the context of the Negative 

Binomial Model, where AV is formally stated as [18,19]: 

 

𝑋:  Number of repetitions of a Bernoulli experiment until a number of successes are obtained.   𝑘 (12) 

 

Then you can take 𝑋the values: 

 

𝑋 = {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3, . . . . . . }. (13) 
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We emphasize that the definition of AV in (12) implies that the result of the last repetition of 

the experiment will always be success, since we must repeat the experiment until the number of 

successes is obtained. To guide the achievement of the Probability Function, we constructed the 

representation indicated in Table 3𝑘,  referring again to the random experiment "flipping a coin". We 

also fixed the occurrence of two successes, i.e., two faces, which are represented in Table 3 by their 

probability of success. 𝑘 = 2𝑝In the first horizontal line, we indicate the number of repetitions, 

considering up to five repetitions of the experiment and this being an arbitrary choice. In the first 

column on the left, we indicate some possible values of the AV that represent the total number of 

repetitions of the random experiment. In the last column on the right, the proportionality between the 

Probability Function, , and the values of the probabilities of success, , and failure are indicated. As we 

must perform successive repetitions of the experiment until we obtain the two intended successes (), 

we present the following interpretation of Table 3:𝑃(𝑋 = 𝑥)𝑝𝑞𝑘 = 2 

𝑥 = 2: means to obtain successes in repetitions of the random experiment, with the probability 

being constant in each repetition.𝑘 = 2𝑥 = 2𝑝 

𝑥 = 3: means to achieve successes in repetitions of the experiment, and so on. Note that from 

this point on we have combinations of results and use bold to highlight the successes in the possible 

combinations. Specifically, in order to achieve successes in repetitions of the experiment, there are two 

possible combinations of results indicated in the 5th and 6th lines. They are success, failure, success 

and represented by ( in the adopted notation. The other possibility is failure, success, success, or simply. 

As mentioned, due to the definition of VA in this model, the last roll always results in success, as we 

stop the repetitions of the experiment when the number of successes is reached. Continuing the 

interpretation of Table 3, we note that in order to obtain successes in repetitions of the experiment, 

there are 3 possible combinations of results indicated in the 8th, 9th and 10th lines. They are success, 

failure, failure, success, failure, success, failure, success, and failure, failure, success, success. The 

possible combinations to obtain successes in repetitions of the experiment are indicated from the 12th 

to the 15th lines. It is essential to note that the various repetitions of the experiment and their respective 

results, of success or failure, are independent of each other and imply that we must effect the product 

of the probabilities of success and failure to obtain the analytic expression of the Probability Function. 

Specifically, the realization and outcome of the 1st coin toss does not interfere with the outcome of the 

2nd toss. In turn, the results of the 1st and 2nd launches do not interfere with the result of the 3rd 

launch, implying that the various repetitions of the experiment and their respective results are 

independent of each other, as discussed in Subsection 2.2. Thus, in order to obtain the analytic 

expression of the Probability Function, we use Eq. (10) and we produce the values of the probabilities, 

or , associated with the results of success or failure obtained in each repetition of the experiment. Based 

on Table 3, the proportionalities between the Probability Function and the values of the probabilities 
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are verified, namely:𝑘 = 2𝑥 = 3𝑘 = 2𝑥 = 3𝒑𝑞𝒑)𝑞𝒑𝒑𝑘𝑘 = 2𝑥 = 4(𝒑𝑞𝑞𝒑)(𝑞𝒑𝑞𝒑)(𝑞𝑞𝒑𝒑)𝑘 =

2𝑥 = 5𝑝𝑞𝑃(𝑋 = 𝑥)𝑝𝑞 

𝑥 = 2 ⇒ 𝑃(𝑋 = 2) ∝ 𝑝2, signifying successes in repetitions of the randomized 

experiment.𝑘 = 2𝑥 = 2 

𝑥 = 3 ⇒ 𝑃(𝑋 = 3) ∝ 𝑝𝑞𝑝, signifying successes in independent repetitions of the 

experiment. This case implies that one of the outcomes is failure, with probability 𝑘 =

2𝑥 = 3𝑞. We must then also consider the other possible configuration, i.e., 

𝑃(𝑋 = 3) ∝ 𝑞𝑝𝑝or. 𝑃(𝑋 = 3) ∝ 𝑞𝑝2 

It is important to note, in this case, that the probability of obtaining k=2 successes in x=3 

repetitions of the experiment is calculated by: 

 

𝑃(𝑋 = 3) = 2𝑞𝑝2,                             (14) 

 

where the factor 2 expresses the number of the two possible configurations. Continuing with our 

interpretation, for x=4 there are the settings: 

𝑃(𝑋 = 4) ∝ 𝑝𝑞𝑞𝑝 ⇒ 𝑃(𝑋 = 4) ∝ 𝑞2𝑝2, 

𝑃(𝑋 = 4) ∝ 𝑞𝑝𝑞𝑝 ⇒ 𝑃(𝑋 = 4) ∝ 𝑞2𝑝2, 

𝑃(𝑋 = 4) ∝ qqpp ⇒ 𝑃(𝑋 = 4) ∝ 𝑞2𝑝2. 

Since there are 3 possible configurations, referring to the achievement of successes in 

repetitions of the experiment, we write: 𝑘 = 2𝑥 = 4 

 

𝑃(𝑋 = 4) = 3𝑞4−2𝑝2,                        (15) 

 

We emphasize that factor 3 expresses the number of possible configurations in this case. Before 

proceeding further, it is convenient to express the Probability Function in terms of the variables x and 

k. Thus Eq. (15) is even partially rewritten in the form: 

 

𝑃(𝑋 = 𝑥) = 3𝑞𝑥−𝑘𝑝𝑘.                       (16) 

 

In the Eqs. (14) and (15) factors 2 and 3 represent, respectively, the number of possible 

configurations and are groupings called Combinations [19]. We exemplify the calculation of the 

number of possible combinations in this model using again the example of Table 3, of obtaining 

successes in repetitions of the experiment. Since the result of the last repetition is always success, we 

have that the other success (2-1)=1, or, can occur in any of the other (4-1)=3, or , repetitions of the 

experiment. Factor 1 represents the exclusion of success that occurs in the last release. In other words, 
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since the last repetition always results in success, the other success can occur on the 1st, 2nd, or 3rd 

rolls. Therefore, the number of possible combinations is calculated by [18,19]:𝑘 = 2𝑥 = 4 (𝑘 −

1)(𝑥 − 1) 

 

.3
!2!1

!3
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


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−
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In general: 
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Thus, by reason of the Eqs. (16), (17), and (18), the analytic expression of the Probability 

Function, Eq. (16), is written in the form: 
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k
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or even: 

,)1(
1

1
)( kkx pp
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x
xXP −−




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



−

−
==            (20) 

 

𝑥 ≥ 𝑘tag. A Eq. (20) expresses the fact that the probability function, , is proportional to the 

probability of success raised to the number of desired successes, and proportional to the probability of 

failure raised to the number of failures and which is calculated by . A Eq. (20) then allows the 

calculation of the probability of obtaining successes in repetitions of any experiment classifiable as a 

Bernoulli experiment, with the probability constant in each repetition of the experiment of the 

occurrence of the event defined as success. As an alternative interpretation, we can state that Eq. (20) 

provides the probability that before the number of intended successes occurs, the other successes can 

be allocated in any order in the remaining positions, which represent the results of the other repetitions 

of the randomized experiment. The e parameters characterize this distribution, which can be 

represented by the notation 𝑃(𝑋 = 𝑥)𝑝𝑘, 𝑞(𝑥 − 𝑘)𝑘𝑥𝑝𝑘(𝑘 − 1)(𝑥 − 1)𝑘𝑝𝑋:BN,  (𝑘, 𝑝)meaning that 

the VA follows the Negative Binomial Probability Distribution and depends on the parameters and . 

𝑋𝑘𝑝 
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3.2 MULTIPLICITY DISTRIBUTION 

In order to provide the connection between the concepts of DBN and the physical quantity 

Multiplicity Distribution, we make some comments in order  to illustrate this physical quantity in a 

simple and qualitative way. As mentioned, protons are particles with a complex internal structure 

composed of quarks and gluons. The Multiplicity Distribution is sensitive to the number of collisions 

between quarks and gluons contained in colliding protons and, in general, to the fundamental 

mechanisms of particle production [22]. Specifically, in collisions between two protons there can be 

the creation of 2 particles, or 4, or 6 or, in general, there can be the production of "" particles. We note 

that "" is an even number due to the conservation of electric charge in the process of producing new 

particles [1]. To address the problem, we define the AV:𝑛𝑛 

 

𝑁: Number of particles produced in the collision.              (21) 

 

Such that:  

 

𝑁 = {2,4,6, . . . , 𝑛, . . }.                         (22) 

 

This set is called the "Multiplicity Set of electrically charged particles", or simply 

"Multiplicity". Each element "" is associated with its corresponding probability of production, that is, 

the value of the multiplicity corresponds to the value of the probability , meaning the probability that 

in the collision between protons two particles will be produced. In general, it is the value of the 

probability that "particles" will be produced in the collision. In this way, the "𝑛𝑃(𝑁 = 𝑛)𝑛 =

2𝑃(2) 𝑃(𝑁 = 𝑛)𝑛Multiplicity Distribution"  set is constituted{𝑁, 𝑃(𝑁)}, which is one of the most 

basic characteristics of proton collisions at high energies and which has been the object of experimental 

and theoretical studies in order to enable the understanding of the strong nuclear interaction. For 

pedagogical purposes only, we present in Fig. 1 a non-realistic illustration of the process of production 

of particles in collision between protons. 
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Figure 1 - Illustration of particle production in the collision between two protons, represented by the larger circles. Smaller 

circles, inside the larger ones, represent the constituents of protons. The particles produced in the collision are illustrated 

by the small circles with arrows. 

 

{2, P(2)}             {4, P(4)} 

 

3.3 NEGATIVE BINOMIAL APPLIED TO THE STUDY OF MULTIPLICITY DISTRIBUTION 

The use of DBN [10], the superposition of two DBN [11,23] or mathematical models of particle 

production that use DBN or its limit cases as an element of the model [9,24,25,26] has provided 

adequate parameterizations of the Multiplicity Distributions. Thus, we performed the mathematical 

procedures necessary for the application of DBN in analyses involving DM, in which the Negative 

Binomial Probability Function is usually expressed in terms of the Gamma Function and also 

eliminating the variable x and the probability value p from the expression (19). In our treatment we 

saw that (x-k), in Eq. (20), represents the number of failures  in x repetitions of the experiment in which 

we expect to obtain k successes. We introduce the variable "n" by writing: 

 

𝑛 = 𝑥 − 𝑘 ⇒ 𝑥 = 𝑛 + 𝑘.                    (23) 

 

Substituting (23) for (19) results that: 

 

𝑃𝑘,𝑝(𝑛) = (
𝑛 + 𝑘 − 1

𝑘 − 1
) 𝑞𝑛𝑝𝑘 .             (24) 

 

To facilitate the use of the complete interface [20] following: 

 

(
𝑛 + 𝑙

𝑙
) = (

𝑛 + 𝑙
𝑛

),                             (25) 

 

We change the variable: in the expression (24) obtaining𝑙 = 𝑘 − 1 

 

𝑃𝑘,𝑝(𝑛) = (
𝑛 + 𝑙

𝑙
) 𝑞𝑛𝑝𝑘 .                    (26) 
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Using the relation (25) and noting that Eq. (26) is rewritten in the form:𝑝 + 𝑞 = 1, 

 

𝑃𝑘,𝑝(𝑛) = (
𝑛 + 𝑘 − 1

𝑛
) (1 − 𝑝)𝑛𝑝𝑘,    (27) 

 

or equivalently 

 

𝑃𝑘,𝑝(𝑛) =
(𝑛+𝑘−1)!

𝑛!(𝑘−1)!
(1 − 𝑝)𝑛𝑝𝑘.      (28) 

 

Due to the introduction of the variable and its meaning, Eq. (23), the expression (28) gives the 

probability of failures and () successes occurring in any order, before a number of successes occur in 

a Bernoulli experiment with a probability of success [3]. Calculations involving factorials are, in 

general, algebraically laborious, so it is convenient to express Eq. (28) in terms of the Gamma Function 

is defined [27] as:"𝑛"𝑛𝑘 − 1𝑘𝑝 

 

𝛤(𝑛) = ∫ 𝑒−𝑥𝑥𝑛−1 ⅆ𝑥
∞

0
,                     (29) 

 

that converges if . If it is a positive integer, we resort to the identity [27]𝑛 > 0𝑛 

 

𝑛! = 𝛤(𝑛 + 1).                                  (30) 

 

Thus, the factorials present in Eq. (28) are expressed in terms of the Gamma Function, namely:  

 

(𝑘 − 1)! = 𝛤(𝑘).                               (31)

 
(𝑛 + 𝑘 − 1)! = 𝛤(𝑛 + 𝑘).                  (32) 

 

Replacing (30), (31) and (32) in Eq. (28) It results in:      

  

𝑃𝑘,𝑝(𝑛) =
𝛤(𝑛+𝑘)

𝛤(𝑛+1)𝛤(𝑘)
(1 − 𝑝)𝑛𝑝𝑘.        (33) 

 

It also follows that in practical applications, the probability is often not known, however the 

average value of a sample of experimental data can be obtained [28]. Thus, since the average 

multiplicity of the set of particles produced in proton collisions, it is related to the probability of success 

by equation [3]:𝑝 < 𝑛 > 𝑁𝑝
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𝑝−1 = 1 +
<𝑛>

𝑘
⇒ 𝑝 =

𝑘

𝑘+<𝑛>
.             (34) 

 

Substituting (34) for (33) results that: 

 

.1
)()1(

)(

),,(

kn

kn

k

kn

k

kn

kn

nknP










+








+
−

+

+

=

         

  

                                                         (35) 

 

After doing some algebraic work on Eq. (35) We obtain the Probability Function in the form 

often used in multiplicity investigations [3]: 

 

 
.

/1

1

/1

/

)()1(

)(

),,(

k

n

knkn

kn

kn

kn

nknP

+









+



+

+

=
 (36) 

 

The analytical form of the DBN now depends on the values of the parameters and , which can 

be determined in Eq adjustments. (36) to the corresponding experimental data. The expression (36) 

also allows for versatile graphing and consequent comparisons with experimental data, when compared 

to Eq. (28). Drawing on Eq. (36) Figure 2 shows graphs of the DBN. In the left pane of the figure, the 

value of is fixed, while the mean values, , are varied. It is noted that as it decreases, the distribution 

narrows. On the right panel it is kept constant and as it decreases the opening of the distribution is 

checked.< 𝑛 > 𝑘𝑘 < 𝑛 >< 𝑛 >< 𝑛 > 𝑘 

 

4 DISCUSSION AND FINAL CONSIDERATIONS 

Since the first application of DBN by the UA5 Collaboration in 1985 [29], it has been frequent 

and widely used in investigations involving Multiplicity Distributions in colliding systems such as 

proton-proton, proton-antiproton, electron-positron and muon-proton [3]. The fact that experimental 

results of DM in many different experiments and in a wide range of collision energy can be 

parameterized by DBN, by the superposition of two of them or even limit cases of this distribution has 

not been considered as an accidental fact and, as pointed out by Giovannini and Ugoccioni [11], the 

impression is that there may be an approximate universal regularity in this fact. Thus, due  to the start 

of the LHC's activities,  making available new experimental information on collisions between 

protons, we have a propitious moment to carry out tests, improvements and development of 

mathematical models and/or calculation structures for investigations of the mechanisms of multiple 

particle production in these collisions. With this motivation we discuss the Negative Binomial Model 
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obtaining its Probability Function using a simple scenario, proposing a didactic approach to the 

elements and hypotheses that characterize this distribution. The purpose is to facilitate and provide 

adequate application and interpretation of results, as well as to disseminate the research theme. Since 

we are dealing with interactions between protons, it is natural to expect that the mechanisms of 

interactions between quarks and gluons that produce particles can be understood in terms analogous to 

the elements that make up the scenario of the Negative Binomial Model. However, such an 

understanding has not yet been possible [3]. Although this understanding does not yet exist, and 

because it does not seem to be an accidental fact, attempts to theoretically generate DBN, based on 

general principles of particle production involving interactions between quarks and gluons, have been 

made over the years. A phenomenological approach used for this purpose is referred to as the "Clan 

Model" introduced in High Energy Physics at the XVII International Symposium on Multiparticle 

Dynamics by L. Van Hove and A. Giovannini [30]. However, any discussion on the subject is outside 

the scope of this work. We conclude by emphasizing that the discussion presented in this work, i n 

order to obtain the DBN, can be motivating and help studies and applications to other diverse systems. 

There is also the possibility of being adapted to facilitate and enable the teaching of other models of 

probability distributions, such as Binomial and Geometric. 

 

Table 3 – Possible representation to guide the obtaining of the Probability Function in the Negative Binomial Model 

considering the random experiment "flip an honest coin". The occurrence of success in a repeat of the experiment is 

represented by and the occurrence of failure by . The repetitions of the random experiment and its results are independent 

of each other, implying the multiplication of the probabilities and . We use bold to highlight the offset of the probability 

associated with the success event in the possible combinations. In the last column on the right, the proportionality between 

the Probability Function and the probabilities and .𝑝𝑞𝑝𝑞𝑝𝑞 

 First 2nd Third 4th 5th  

 

 

     Proportionalities between the Probability Function and the 

probabilities and . 
𝑃(𝑋 = 𝑥)𝑝𝑞 

𝑥 = 2 𝒑 𝒑    𝑃(𝑋 = 2) ∝ 𝑝𝑝  or 𝑃(𝑋 = 2) ∝ 𝑝2

 
       

𝑥 = 3 𝒑 𝑞 𝒑   𝑃(𝑋 = 3) ∝ 𝑞𝑝2 

 𝑞 𝒑 𝒑   𝑃(𝑋 = 3) ∝ 𝑞𝑝2 

       

𝑥 = 4 𝒑 𝑞 𝑞 𝒑  𝑃(𝑋 = 4) ∝ 𝑞2𝑝2 

 𝑞 𝒑 𝑞 𝒑  𝑃(𝑋 = 4) ∝ 𝑞2𝑝2 

 𝑞 𝑞 𝒑 𝒑  𝑃(𝑋 = 4) ∝ 𝑞2𝑝2 

       

𝑥 = 5 𝒑 𝑞 𝑞 𝑞 𝒑 𝑃(𝑋 = 5) ∝ 𝑞3𝑝2 

 𝑞 𝒑 𝑞 𝑞 𝒑 𝑃(𝑋 = 5) ∝ 𝑞3𝑝2 

 𝑞 𝑞 𝒑 𝑞 𝒑 𝑃(𝑋 = 5) ∝ 𝑞3𝑝2 

 𝑞 𝑞 𝑞 𝒑 𝒑 𝑃(𝑋 = 5) ∝ 𝑞3𝑝2 
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Figure 2 - Graphs of the Negative Binomial Distribution, Eq. (36). In the left panel, the parameter value is kept constant 

by varying the values of the mean value. In the right pane it is constant and the values are changed.𝑘 < 𝑛 >< 𝑛 > 𝑘 
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