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This research material suggests the exploration of
approaches to deal with variational problems
through approximation techniques. In mathematical
contexts, variational problems involve optimization
of functions, and approximation methods seek to
find approximate solutions to these problems. These
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approaches can be essential in situations where

finding an exact solution is challenging or Approximation methods, infinite
impractical, allowing for the effective analysis and series, MATLAB, boundary conditions.

resolution of complex issues through approximation

techniques.

Here we will introduce some concepts from Lebesgue's theory of integration! and Sobolev's

spaces. The reader is recommended to study chapter 2 of volume 1 of this work in order to recall basic

concepts of linear spaces.

Definition 1: 1t is called domain Q, in Lebesgue's sense, to a subset (open or closed) of R® with non-

empty interior.

Definition 2: This is called _the Lebesgue measurable integral of functions fover a given domain Q a

. _ft_,f'x dx

Definition 3: Define norm of Lebesgue, to the norm (which is a function of || about a normed

Euclidean space whose values are non-negative — See item 2.9 p.85 in volume 1 of this work)

established by the expression

L
F

e

Definition 4: The Lebesgue space is a Banach? space defined by

Ip O = f: H' ||”“| < o (1.1.1)

Definition 5: It is said that two functions f and g are equal if they differ from each other by one

subset of points of measure zero, i.¢.,

1.2
"f\ E".',u i) 0 (] )

! Henri Leon Lebesgue (June 28, 1875 — July 26, 1941) was a French mathematician.
2 Stefan Banach (30/mar/1892 — 31/ago/1945), matematico polonés.
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We observe that, in a Lebesgue space, because it is a Banach space, Minkowski's® inequalities

remain valid:

||'f +g||n'1l.l L : "'If“',u LY + "g |L1u ¥ < I' : .I” = xn’xﬂ € "r'fl';' EE .;
Holder*:
||fE’|L; L= ||?'|L.1, ||,|_?||J 1< pg < oot ,r_lr } f_lq cdp ) ,gclqg Q)
Schwarz®:
ﬂfg{m < |f| ﬁ_ - |-}, =2-norma.

It should be noted that the key to the processes for the determination of a numerical solution
for differential equations will be the ability to develop precise functions for the approximation methods
employed in the definition space of the studied PDD.

To get an overview, whether it's the approximation of a given function in some region

Qc R  Wwhose contour is bounded by a curve . In the solution of EDPs, certain conditions are
usually prescribed in its outline; a function is then needed that it satisfies the prescribed boundary
conditions, ¢[. =@, let then be a set of functions @il = 1,2,

introduced in such a way that ¥V« |. =0, so that atall the interior points of {2 can be approximated

by ¢

¢ = U+ Y wie (1.1.3)
e

The computation of the coefficients a ; is what will make the constructed approximation good

or unsatisfactory.

The idea of this method is that when finding the extreme of a functional J fis to consider instead
of the space of the permissible functions, only those functions that can be represented as linear
combinations of the coordinate functions that form a basis of a subspace of the permissible functions

(also called basis functions or even permissible functions) are considered:

3 Hermann Minkowski (June 22, 1864 — January 12, 1909) was a German mathematician.
4 Otto Ludwig Holder (Dec 22, 1859 — Aug 29, 1937) was a German mathematician.
5 Karl Hernann Amandus Schwarz (January 25, 1843 — November 30, 1921), German mathematician;
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M

fax Sy @y, x .1.1)

where g/ are constant.

Definition 1: The system or set of functions ¥, it's called coordinated functions.

Asetis ¢ madeupof functions  , thatare linearly independent and that constitute a
complete system of functions in the given space, each of which satisfies exactly the essential boundary

conditions, for example:

w2y a = h =0Y% = 12, . n (212)

Generally speaking, when you ask that the functions fx are admissible, it is necessary to the
coordinate functions ©; X certain conditions such as limitations on derivability and on the
verification of boundary conditions. In this way, the functional J f becomes a function of the aj

arguments, i.e.,

g =1 alal,..  an (2.1.3)

You find the aj values that provide extremes to the function by solving the following system:

l e l_ 0. = 12....n 2.14)
daj

which, as a rule, is non-linear.

The sequence fn x thus found converges to the minimum of J f, i.e.,

_-1]".]3 . minl J (2.1.5)

However, it cannot be concluded from the previous expression lim £ x* = f x . The
R—+x
minimizing sequence may not converge to the function that performs the extreme in the class of

permissible functions.
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Conditions can be indicated that guarantee the existence of the absolute minimum of the

functional and that it is achieved in the functions fiz x . In the case of the functional, for example,

fla) =
o

-]
JF) = ]'fu; fe ode with

&

(2.1.6)

jal

These conditions are:
. The function is continuous with respect to the set of its arguments for any FX A X €

D, where D is the problem domain;

. Exist Constants a>0p>1;3 suchthat7 ,frx >|7f +3
. The I f, fx ,x has continuous partial derivative ;LI , and this is a function
Fx

descending whatever x, f € D.

If by this method an absolute minimum of the functional is determined, the approximate value
of this minimum is excessive, since the minimum of the functional for arbitrary permissible functions

is not greater than the minimum of the latter for a part of the class of permissible functions.

Examples

Find the approximate solution of the problem over the minimum of the functional

1
J(exreed) r (and?  2xy)Dx
s
o

Comy 0 =y 1 =0. Compare the approximate solution with the exact solution.

Solution:

Rayleigh-Ritz Method

Be v x = l—x x%k =12,..n the functions coordinated. It can be seen that, i *

by definition,

satisfies the essential boundary conditions and are LI. In addition, they form a complete system
in space C1[0,1].
Fork=we have » =a ; =a 1-x x =a x - x° taking the approximate value of y, y1, in the

functional, we have:
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1
Joy a1 2x7 & x x*? 2ax xt &
l_f] 1 1 f
il
1
J fﬂil dr  Gxd | xS x* 2a x xt &
— 1 4 4 _ + 5 -
4 1
3 .
J ¥y o= ar a a
10yt ayt '
Solving
1 5
0 34+ _E'_&ﬂ_
Ca s17s BT
Soon i
8] -
x x?

Ly g = 1l _xx @ 1l _xx @ x _x 4m@m

Taking the approximate value of y , y2 , in the functional, and doing the operations, we have:

, 3o, 1, M 1 i
W= a a; a . &
10,00 (15,0 ) 710,

By deriving partially with respect to the parameters and equaling to zero, we obtain:

lemb [23] '41] [1I
— | =] — al 4 _al 2|2l =0
If.-iﬂ] ] 5 30 - 15

3 | 41 1)
[:ﬁ] - a i"ﬂ

oy

Solving the above system is:

a (10613
1 107303
700
al
- 73
soon
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1 xx (™31 xx®

10615
S

Exact Solution:

J oy ’[‘I yry,x dx

has the following Euler's equation:

s L)

7 E

How & jo¥ = 2v 2%, 5f JF = Ivre g v jgx — 2yn

then, forming Euler's equation, we have:

which is a second-order homogeneous differential equation, the solution of which is: Let y = x be a
particular solution; the general solution of the representative differential equation of Euler's equation

is:

vo=uocosx + Jsin x +v.v=—x

y=aocos x 4+ Fsin x —x

Using boundary conditions, you get:

v O O=acoz 0 +53sin 0 —x=0=0=ux
v 1 0= acoz 1 + Fsin | ¥ =x coz 1 1 + Fzm 1 0
. ¥ cos 1 1 ¥ 1-ecos 1
o sin | sin |
¥ 1-0,84147
— = 0,346
0,34030

So the general solution is:
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¥y =xcos x +0,546xsmnx —x

v =x cos x +0,546smx — I

Shown below is a comparative study between the y1.y2 and y functions (developed in thfo,1]

The values of the three functions are approximate and all satisfy the given boundary conditions.

x:=0003.1

£}

v1(x) :=—i(x— fj]
18

10615
¥2(x):= _(x— %) - 799 (x2_ 3]
101393 2473

vix) =x-{coz(x)+ 03548-2mn(x) — 1)

0.1 T T T T
0.05 ]
yifx)
:!If_?;::‘x} D ISl ab L TP I N
() \ /
\K& .-'/
~0.05[ S~ _— 7
o1 | | | |
0 0.2 0.4 0.6 0.8
X

FIGURE 12-1: AUTHOR

Apply the Rayleigh-Ritz Method to the functional

3
Ju = !.em”:it, Suwa =ou b =53 ucC? Ia.h} (2.1.7)

o

Solution:

"
Be choose , where: ¥ = uy + » _au;

i=1

Uy a e tiy B TS

o i

;B OE = 1w eC* |a,h

Which meets the necessary subsidiary conditions. Thus, by replacing itself in the functional, it is

possible to
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5
J'|u1§ f

M an
() i K i
fl’.“fl'.“ T E 'ﬁlj H.”HJ' i HJH.“ L] E {?J{?JHJHJ ”11_

1=1 |

B
U l " W i
= Vuuadx , c; = ——I o o, dy
Hr L] rh Er LU F i)

a

Defining if it has to be functional can be rewritten as

follows:

” M
¥ s i

Jou Lo _E feFan E Lo,
i1 FRE |

o . a - .
The extreme condition is that & 0, so P 0 2, 4 EZL,-,HP i=12,.
E)rtz- L i=l

In matrix form, you have
L €

ml I

L. I {4 I

So the solution, which is to find the coefficients of the basis functions, can be reduced in the

solution of a system of linear equations:

Loy [ - ik L

Exercises

. . . . . . . w 3
1 Finding an approximate solution of the nonlinear differential equation ¥ Er’* 0

Obeying the conditions 0 —4y 1 =1.

2 Find the minimizing functions of the following functions and compare them with the results of the

exact solutions:

1
a-jy = )‘ v2 42y de sy 0 =y 1 =0
il

-y
i

b-Jy = ! 2y 407 4y @ sy 0 =y 2 =0
il
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They are approximation methods used to solve differential equations. These methods have
several procedures, among which the Method of Moments, the Galerkin Method, the Method of
Placement, the Method of Subdomain and the Method of Least Squares stand out.

Let L be a differential operator of any process, which applied to a function « , produces another

function p , in some domain 2 (space where the operator is defined):

L

q M O=p

G.1.1)

Let be a problem represented by a set of homogeneous equations valid within Q :

L u —0 3.1.2)

and let the definition of scalar or internal product cL, «  with another function v given by:

v j]. u - vdf) (3.13)

It can be seen that by integrating the above expression in parts, we can successively eliminate
the derivatives of . From the linear analysis, it is known that such a procedure leads to a transposed

form of the dot product - with the adjunct operator of L,, - associated with the terms containing

information about the boundary conditions:

[e@vdn = [ul'®)d0 + [|66)8@) - GWS ) dr (3.1.4)

] 12 |

Where T is the contour surface of; G,S are differential operators due to the integration by
parts and L is the deputy operator of L,, .

By definition, G v contains the terms 0f V resulting from the first phase of integration by the part and S U the
corresponding terms in U.

If L= L" issaid to be adjunct auto, and in this case we also have S = S*.

The above piecemeal integration also leads to two categories of boundary conditions:

. The set G v prescribed is called Essential Boundary Condition; and

. the prescribed S u set is termed Natural Contour Condition.
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The boundary conditions of the essential type need to be known at some points in order to
enable the uniqueness of the solution. Let I'y1T , complementary portions of the total surface area
bel (I, +T, =T)

), then, for a adjoint auto operator L, we have:

G v, prescribed on]1

Su , prescribed over [

It should be remembered that every auto-adjoint operator is positive-defined if:

f Lu -udd)>0\u (3.1.5)

f]_u TR LY 0eu =10

To determine whether LQ is positive-defined, we can integrate the dot product into parts until
it contains derivatives of the same order. This operation is fundamental in the transformation of LQ
into L™,

It should always be borne in mind that the defined positivity property is extremely important

for the establishment of solution schemes and also in the construction of variational procedures.
Examples

1 Properties analogous to the self-adjoint and positive-defined in LQ operators can also be defined for
matrices (as presented in chapter 1); these properties are respectively symmetry and positive-defined.
(Remember that a matrix is said to be symmetric if A = A" oreven y.Ar = x Ay and is said to be

positive-dex™Ax = 0.vx€ xTAx —0 .= x —0)
aﬂ
2 Show that the operator L = ey 1s self adjoint and positive defined in the interval [0,1].

Solution:

Let you and v be any two functions, then
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dtu
(o(w)x) = [ —
. ax*
1 : 1
d:.:v _ du dv
- Eﬂflaa‘
du | dv | : a2y
_ ¥ : i I — v
dx I E 0 = -

that comparing with (12.3.4) we see that Q is self-adjunct. Note that:

Gu _u
Su _ .du
- T dx
Gv _v;
Sv _dv
ax

s 8

The essential boundary condition u is prescribed; and the natural boundary condition is -

du/dx prescribed. If u=v and boundary conditions are homogeneous, it will be seen that £, it is

positive-defined.

*u

Investigate the properties of the operator £, * = _— in[0,1].
Solution

Let v be any auxiliary function, then the dot product is:

1 1

. o e
] Luywvdx=| —vdx
o *p dx*

Integrating the above expression four times, we have:

v uefx

ddu|  dvdu|  dvdu, dv I‘ Cd
u
&

1
J"du}vdx= — -
% dx di? dx? dx

&=, 0 &= e

Putting the above expression in the form of (12.3.4) it is seen that:
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1 1
"f-‘-(mv‘:ix:_].ﬁ (V)uck 4 ’Glfv}slfu) a Gziv)Sz(u)]O + {SE(V}GZ(HJ B Sl{v)Gl(u}]
0

. ]
0

Therefore, the essential boundary conditions are:

Prescribed and natural boundary conditions are:

asu @i Ppregcribed.

[
dxt’

4
The operator = d” e => be self-adjoint.

‘C.:dx“ =L e

Now by placing u=v and making the boundary conditions homogeneous, we get:

! Lo
gciu‘mdx= ['F] ax - 0

which shows that the operator in question is positive-defined. That is, so that for all

£, ¥ > andany function u, it must be constrained to at least u0=ul=0 or

Weighted residuals methods are numerical procedures for the solution of a set of
differentiable equations of the form:

£ =p em {}

iy

Harmony of Knowledge Exploring Interdisciplinary Synergies
Approximation Methods in Variational Problems

(3.1.6)



with the following boundary conditions:

essential: £y, g‘].
natural: £ g |]
with Iy + I'; = I' the outer surface of the domain being € , and u0 being the exact solution.

The function u0 is first approximated by functions @ X, such that:

n 3.1.7
U = znkok ( )
k=1

where ok are indeterminate parameters and ¢, xre linearly independent functions, taken from
a complete sequence of functions ¢1.¢2 ...¢% . These functions are usually chosen in such a way that
they satisfy certain conditions, called admissibility conditions, relating the boundary conditions and
the degree of continuity. Functions are considered to belong to a linear space, that is, they can be
combined linearly and have a dot product, norm, and metric as defined in chapter 2 of volume 1 of this
work.

Remembering that a sequence of linearly independent functions is said to be complete (see
section 2.6 et seq. in volume 1 of this work) if a number N and a set of constants o can be found such

that, given an admissibility and an arbitrary function uo , we have:

<3

N
H”ﬂ - Z“:“'-—’f
i-1

(3.1.8)

where the amount f is as small an amount as you want.

The functions ¢ for the problem (2.3.6) must satisfy the conditions (2.3.7) and must necessarily
have a sufficient degree of continuity to make the left-hand side of (2.3.7) nonzero.

Substituting (12.3.8) into (12.3.6) we find an error function €, called a residual, i.e.:

e=L,u —p=10 (319)
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Note that € is equal to zero for the exact solution, but not for an approximate solution. The
residual is forced to zero in the mean sense, i.e., on average, by means of a procedure of zeroing the

weighted integral of the residual:

[ cvdds = 0.¥i = 1.2,....n (3.1.10)

Whereia set of weighting functions, which are also part of a complete and linearly
independent set.

By doing so, the solution converges to the exact solution, with an increase in the number of
terms adopted.
NOTE: It is good to remember that an infinite set of orthogonal functions is not necessarily complete,
that is, one can have an infinite number of functions, but the solution does not converge to the exact
solution. For a sequence of functions to be complete, it is necessary and sufficient that each and every
subsequence of the sequence be a Cauchy sequence. That converges to the same function in the space
that contains them. Thus, a metric space is complete when all Cauchy sequences converge to a
boundary that belongs to space.

Be the following set of functions o, sian],'v'fc 1.2,....n and be the solution.
i = L“ “kt:}k
k=1

This does not allow the solution U = constant to be reproduced . If the possibility of u being
constant exists, then there is a need to have a term in the solution that allows the desired solution to be

reproduced. Like this

.

u=a,-14 an(;}‘,
k=1

which is now a complete set. This example illustrates the difficulty in establishing the completeness of

a given set of functions.

The following are some methods based on the idea of orthogonalization. In them, the weighting

functions are chosen in different ways. In principle, only self-adjoint and positive-defined operators
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will be considered for the sake of simplicity of presentation of the methods, but the same applies to

operators of more general types, which will be seen later.

This method was developed by H. Yamada in 1947 and H. Fujita in 1951 for application to
laminar boundary layer and nonlinear transient diffusion problems, respectively. As we have
mentioned earlier, the weighting functions can be differen “irom the approximation functions ¢; can
be used.

A simple choice is the LI and complete set:
Lxx%x? .. (3.1.11)

for one-dimensional problems. In this way, successive moments of increasing order of the residual

are forced to zero like this:

I';L',d.r = Jf Lu —p gdx =0
oW = Z:nf{)., (3111)

v, = X0V = 0,1.2,..n

The above technique is called the Method of Moments, because of the type of choice made

for the weighting functions. If any other set is chosen for the weighting functions, it will no longer be

the Method of Moments, but only a weighted residue method.

Example
Let ==@u —p du fu+x =0 €, where Q=0.1, with the following conditions of
dr?
contour w0 =ul =0.

Be the following approach for the solution:

U x 1—=x o) + o+ oagxs 4

that satisfies the given boundary conditions. For the purpose of calculation, only the first two

terms in o will be considered, i.e.:
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H=x 1—x “1+“}"

So the residual function will be:

& u P x + 2 1 39x .\'2 o, 2 i 4 _,‘-3 .\'3 a,

Orthogonalizing the residual with respect to the weighting functions 1 and x, we have,

respectively:
1
[c1d=0
0
1
r e-xdx =0

"0

By integrating, a system is obtained, which placed in matrix form is:

11 11 1
6 E* n]] 2
11 19 ¥ 1
122 3

whose solution is:

122 110
t’ll = a}-ﬂz — %

Thus the approximate solution functionis« = x 1 x lﬁl_s'] 122 4 110x

sin x
The exact solution of the problem posed is u,,,, = | o ] x

Using Mathcad you have:
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x:=0,0.05..1

ua(x) = x(1 —x}~rl:alg/l\1~{122+ 110-x)

) ( sin(x) \1
ue(x) = -x
k, sin(1) )
X = valx) = uve(x) =
0 0 0
0.05 9.332-10 -3 9.395-10 -3
0.1 0.018 0.019
0.15 0.027 0.028
0.2 0.036 0.036
0.25 0.043 0.044
0.3 0.05 0.051
0.35 0.056 0.057
0.4 0.061 0.063
0.45 0.065 0.067
0.5 0.068 0.07
0.55 0.07 0.071
06 0.07 0.071
0.65 0.068 0.069
07 0.064 0.066
0.75 0.059 0.06|
Figure 2 u"+u+x=0 solution
0.08 T
0.04 / \'\e
7 \\
:’{ ‘\
ua(x) / \
L,IEl:}(} D[}q r;r'
/
',.f
0.02 /
7
| | | |
Og 02 04 06 0.8
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This method appeared in the solution of differential equations performed by J. C. Slater in
1934 and by J. Barta in 1937, respectively applied to the solution of electronic energy problems in
torque mats in prismatic parts of square section. It was later generalized by R. A. Frazer (1937) and
C. Lanczos (1938).

This method consists of nullifying the residual function [] at a series of chosen points within
the integration domain of the problem. It should be noted that these points are usually, but not
necessarily, distributed across the domain.

Let the following approximation function then be:

I - an{')k (3'1.12)

where @& satisfies the boundary conditions.
Now be determine the values of ok by forcing the condition:

e=£Lu —p=10 (3.1.13)

X 4
Let A be the Dirac delta function, a function that is equal to zero if x = x,, e f Al )de =1,

X =€

when ¢ —» 0. Thus, one can write the placement method as a weighted residue technique:

J s = 0¥k =12, (3.1.14)
Examples
1. Be solve the differential equation %%u 4 = 0inQ[0,1]. Considerx = 0.25and x = 0.5.
Solution

A-Let # = x —x° pe admissible function taken from the permissible o i1 Set, which are LI

Using u/ and making =| 0 it has.

x=0,5

244 x —x* ]n: 4x | =10

“leens T 0.5
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solvingisa=-1, so 1 x —x?

b) Be now. ,,

=0 A = =10

o x- x> ta, x> x° Bydoing, wehave “t o v-05

—1,7500n — 0,81250 =2
—1,8125y +0.546%: =1

] = _0,?846 N = _0,??1?
Soon
uMe 10,7846 x _ x? 0.7717 x? —x3

which shows that the approximate solution in this method depends on the placement points. Using

Mathcad you have:
Placement Method for the equation x” | 44 — 4x — 0

®x:=0,0.01..1
ul(x) :=—(x —XE,I

2 2 3
u2(x) :=—0_?84-6(x— % ) - 0_??1.& . )
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Figure 3 Solution of u"+4u-4x=0 by Placement Method

_04 I 1 | 1

2. Let us solve the following Poisson differential equation:

9'u } o%u
ou ot
g ar

1

with the following boundary conditions: # X = 0.Y x =4a A y = +b .
Solution

Let the following approximation function be:

,
u ¥ —ad ¥V b o + 0y X5 4V 4

which is general. To simplify the example, let us consider only the first term of the sum, and a square

region a = b . In this way, we have:

i £v] x? GJ J:; = a2

Soon
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Doing lies: cjx y 0 = €}x_y ap = 0
19)( 27 1y
el e
Soon

(=]

T SRR R |]13]{;}]| [i][alf] T ]

Solution in Mathcad:
a:=1b:=1p:=1
1:=1.200:=1.2

xj =—a+ 0.05iy] =—b+0.05]

ul(x,y) = —L(Xz —112]-6'2— hz)

4-112
ul(x,y) = ~(x2 - az]-(yz— hz)." 19._ P4 _1.%.(}{2 + yz) —I

Ajj :=u1(xj,yj) Bj, = uz(xj, yj)
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Solugdo em Matlab
function exemp2
% exemple do capitule 12 secao 12.3.5 método da colocagio

ElEg

global & b p

a8 = 1r

b =1;

p=1;

®x = —a+0.05:0.05:2;

y = -b+0.05:0.05:2;
[~¢~] = meshgrid(x,v);
[Ax,~] = =size(x"):
[~,my] = =size(w):

21 = zeros (nx,my) ;
Z2 = zeros (nx,my) ;
for i=l:nx
for j=l:my
21(i,3) = uwl(={i),¥(3));
22(1i,3) = w2(x{1),¥(3));
end
end
figure (1)
surf (Z1) ;
figure(2)
surf (Z2) ;
figure (3)
contour (Z1, 30, "ShowText', "on')
figure (4)
contour (Z2, 30, "ShowText', "on')

function [A] = ul(X,Y)
A= -p*(X"2-a"2)*(¥"2-b"2)/ (4*a*a) ;

end
function [B] = u2(X,Y)

E = —(X"2-a"2)* (Y "2-b"2)* ({19*p/60*a 2+ (1*p/15%a™4) * (X"2+¥"2) ) ;
end

end

Figure 4 One- and Two-Term Pair Solution

u1l = Aprox com 1 fungao base - contorno de u1
50
S
40 9O
0
30 a0 \ &
E 200 020123% ey
2 2
&0 40 — 60 10[% 2 %f)z?
20 20 40 P 2 . ANV
10 20 30 40 50 60
u2 = Aprox com 2 fungoes base contorno de u2
60 -
50 0059%\& 2
40 o
30
=)
209 AR
1 v, (5]
e 60 > H©

10 20 30 40 50 60
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This method first appeared in 1923 by the German engineers C. B. Biezeno and R. Koch to
solve problems arising from the stability of beams and plates.

This method is similar to the placement method described above, but here instead of zeroing
the error function at certain points, we try to zero the residual function over small regions of the
domain, i.e., dividing the domain into small regions, canceling out the error integral over each

region:

‘ [ () = 0

1]

(3.1.15)
for different Qi and with | JO, = © and more O, N, = @,Vi = j

Example

Fu
Be resolve 4u — 4x = 0 t0 [0,1] by splitting the domain into two regions.

Solution

- 5 3
Be. 1w oy X — X7 oy X xX-

Zeroing out the waste in each sub-region, we have:

2

[ 4x?—dx-2ap+ 47— 4x?—6x+2 ay—4r dr =0
0

1

[ede= [ 4x2—ax -2 ap+ 45"~ 4x> 6542 oy~ 4r dv = 0
2 in

that solving, it is found:

-

0.44230
a, = —0,61538

Therefore, the approximation function, by the sub-region method, is
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1wk, 0,44230 x — x° 0,61538 x* — x°

This method appeared in 1795 with the mathematician Johann Carl Friedrich Gauss when he
studied the estimation of curve fitting by the least squares method.

In this method, the weighting functions *: are chosen as follows:
iy = £ oy (3.1.16)

Where ¢ are LI functions and part of a complete set. Let then , where ® © = p is an

approximation function of u , with

=2 (3.1.17)
So the residual will be:
e=Lu —p (3.1.18)

Since we must have the dot product between the residual € and the weighting functions equal to zero

in the domain, we have:

ety = [evdn (3.1.19)

0

As the functions, ¢y = £ ¢ substituting in the above expression, and resolving comes:

ey = £Luy —piy = £ Zniw; —p, £ o

=0, £ 6, .£ 6 — pL¢ =0
. 2
As,weltc o . o =J £ ¢ £ g =||£ & ||
o = o6, = 0= 1200 (3.1.20)

4
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Example

. . . . . . &
Let be solving the same problem as in the previous section, that is, solving ii 4w —4x =0 at
ax-
[0.1].

Solution:

2 2 3 2 3
BC, S 1t oy X — X0 o, X —x0 o, oy X - x2 NN vy X~ — X~

e e -pla =o
0y ||L in ||:2 - p.L o 0

whose solution is

110
ky — T
101
399
fll —Hg
and '
!'f“p Y = m X .T: ﬁ .T: 1'3
b 101 449

Comparing 4 (solution by the placement method), with ,sm)m the example in the previous

section, by the method of sub-regions) and 42 (solution by the method of least squares), we have:

u‘m'z 10,7846 x — x° 0,7717 x* —x°

TR 0,44230 x — x2 0,61538 x? — x?

110 5 399
W = | —| x—x? — X x
- 101 449

Making use of a small procedure in Matlab:
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clear;clc;

% fungio auxiliar do ODE solver ode45

vdu = B(x,y) [v(2); —-4*y(1l)-4*x]; % ul" = uz
T ud' = —4ul - 4x

% gclucéc pelc método da colocaglo

uZme = @(x)-0.7848*% (x-x"2)-0.7717* (x"~2-x"3) ;

% sclucéo pelo método das sub-regides
uZsr = B(x)-0.4430% (k-x"2)-0.61533*% (x~2-x"3) ;

% scluglc pelo métode dos minimos guadrados
n2mg = @(x) - (110/101) * (x-x"2) - (399/449) * (x~2-x"3) ;

% plotar as funcdes
fplot (@ (x) [-0.4430*% (x-x"2)-0.61538* (x"2-x"3),...
—(110/101)* (x-x"2) - (399/449)* (X" 2-X"3) ;...
—-0.7846% (x-x"2)-0.7717* (x~2-2"3)], [0,1]): grid on;holdon;
title|'Solugdo da equagio u"+4u-4x=0"):
xlabel ("espago x"};
vlabel {'solugdo u'):
legend ('u2sr', "uZmg', "uZmc") ;

Figure 5 Comparison of the graph of the equation u"+4u-4x=0
Solugdo da equacdo u"+4u-4x=0

0 T T T ! T T T I I
H u2sr
0.05}F A N S R E uZmq |
: ' : : : : : uZme
B 1) ¥ S W N A [ boeaoes FE— deeeeees Lo L _
DA |------t-b Y- T oo R R Y . N S|
=
h=]
B D2 N ALnEEEN oo oo - R PSS -
= 1
L=] '
@ :
0.25 ------ [ A L T froeees e H A [ n
B T T At LR CERNI SRR SRR -
B e B S A B F e SRR BEPERAY SRR -
04 | | | | I I | 1 |
0 0.1 02 03 04 05 06 07 08 09 1

The solution of the differential equation found using Matlab using the bvp4c function is shown
in the procedure below (commented to facilitate the reader's understanding) and whose result is

presented in figure 2:

function mat4bvp mod
TMAT4EVE _MOD Acha a solugdo da eguagdo:

zobre o intervalo [0, 1] com as seguintes condigfes de contorno:
u(0} = 0, u(l} =

Primeiramente se utiliza a fungdo bvpinit para se determinar uma
condigdo inicial para se poder resolver o problema de valores

P I R R
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% decontorno pelo solver bvp4c.

% solinit = bvpinit(x,yinit) onde x é um vetor gque especifica
% uma malha inicial e yinit é em geral uma fungdo com os

% valores iniciais de y nas abscissas x.

elep

solinit = bvpinit (linspace(0,1,21),@mat4init) ;

% solinit.x % mesh dada por linspace acima
% sol.x Malha selecionada por bvpi4c
sol.y
% sol.yp Aproximacgdo para y(x) nos pontos da malha de sol.x

sol.parameters Valores retornados por bvp4c para parametros
desconhecidos, se existirem

oe

oe

sol.solver 'bvpdc’

o

Se queremos resolver o problema de valores de contorno (BVP)
sobre [a,b], entdo especificamos x (1) como 'a' e x(end)
como 'b', e colocamos isso num vetor coluna gque pode

o

o

cavr vrafaran~iada rnAavr 1ima Fiaina3Aa Thafian!

sol = bvp4c (@matdode, @matdbc,solinit);

% Agora se pode listar ou plotar os valores da solugdo nos pontos
% da malha entre os pontos do intervalo definido.

% Em geral, a solugdo aproximada S(x) é continua e tem

% derivadas continuas. Pode-se utilizar a funcéo

3 DEVAL para avaliar bastante pontos para se ter um grdfico suave.

xint = linspace(0,1,101);
Sxint = deval (sol,xint);

$Sxint (1, :) = valor da solucdo em x = Sxint (2, :)
figure; T
dydx = [ v(2) su" = y' <=>y(1) = y(2)

function res = matédbc(ya, yb)

res = [ __yva(l) ... s.va(l) = v'(a) —-> va(l). =0 _________.

yb (1) 1; 5 yb(1l) = y'(b) -=> yb(1l) =0
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Figure 6 Graph of u"+4u-4x=0 solution by matlab solver bpvéc

Solugio da Equagio u™+4u-4x=0

valores de u

PP I T N T b T S

Due to the importance of Galerkin's method, we will not describe it here, but will open a section

just to discuss it. This will be done in the next section.

The Galerkin method is a particular case of the weighted residuals method, in which the
weighting functions are v; > same as the approximation functions % .

This method approximates the solution of a given set of differential equations and their
boundary conditions by substituting in them one or more verification functions, which, in principle,
satisfy the boundary conditions. Since the verification functions are generally different from the exact
solution, the set of equations produces some residues. These residuals are then weighted by the
approximate solution modes and made equal to zero, over the domain.

Let the system of equations be:

kil

|u =iy —p= 0 (411)

with the essential and natural boundary conditions on ¢ « |]_ g ®u |l_ g about T,

where > % € they can be differentiable, integral, integrative-differentiable operators, etc.

Let ul be an approximation function that satisfies the boundary conditions and formed by the

complete combination “: of functions:

Harmony of Knowledge Exploring Interdisciplinary Synergies
Approximation Methods in Variational Problems



(4.1.2)

g, = —p= ll:n.!r% ; —p (4.1.2)

that must be orthogonalized with respect to the same approximation functior “ that is:

£, 0 ['.-—:.»Adsz 0,% = 12,...n (4.1.3)
]
If the operator is linear, the above equation yields a system of linear equations from which the

coefficients ok can be obtained:

£,y [ b A f;mﬁ&'::,w,k 12,001 (4.1.4)

o iy

or in matrix form
Ao =p (4.1.5)

Of course, the approximation function u/ belongs to the space H generated by the functions
¢, € H  Thus, the Lax-Milgram theorem establishes the convergence criterion of the
process.
Before enunciating it, it is necessary to define what is a bounded differential operator and a

coercive differential operator.

Definition: A linear differential operator is said to be bounded operator if there is ¢ > € such that

L v w < ﬁ||1‘| ><|u-‘|| P A R TR Il|

, 12 (4.1.6)
= [l v

Definition: A linear differential operator is said to be a coercive operator if there exists # > 0 such

that

R
‘ PRI LI LR :.'|1‘ A AT

~ [l

. . 4.1.7)
12
v "2 4+ oy |
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Theorem: (Lax-Milgram). Be a bounded and coercive linear differential operator; let V be a subspace

of —. So there is a single u/ belonging to V such that
cw —pyv =0, vEV (4.1.8)
and more,
cun —py =0, vEV (4.1.9)

Where @ ©— is arbitrary and you is a weak solution - # =p of withx € Q in —~ Q.

Definition: The inequality (12.4.10) that appears in the Lax—Milgram theorem is called Cea's

lemma:
||u1 — u|| < iinf "1 —u ” vE @, +V
o T .

Examples

1. Solve the equation du +u+x =0 at[0,1]and with the conditionsu 0 =u 1 =0.
dx?

Solution

Since the approximation function has to satisfy the boundary conditions, we have:

L el
u x 1—x v, b oox +ax” + ...

Be it as a first approximation , u1 =x 1—x a; + ax where

1 ,
. o =x 1—x

’ egdx =0, e=4L u —p, com .

% h, =x% 1—x
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Soon

Integrating, we find:

71
369
41

that generates

7n 7
1 X X e [
369 41 ]

Comparison of the Solution by Galerkin's Method and of the Moments and Exact

x:= 00+ 0.0501071

Solution by the Method of Moments y2(x):

Solution by Galerkin's method yg(x):

Exact Solution y(x):
}'2(2{) = x(l —x)r f_i_ 2:& | }g(x) :=K'(1 —K)[ :'l' L'K | }’(X) — SI(xX) —x
\ 649 649 ) \ 369 41 ) sin(1)
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0.08 I ;
0.06 \ -
Y69 /
Y269 0.04 / -
i /
a‘; lL‘
0.02 \ -
.‘f l;:
/ \
ol 1 1 | [ .
032 04 06 08
X
x = y2(x) = ve) = y(x) =
0 0 0 0
0.05 9.332-10 3 9.545-10 3 9.395-10 3
0.1 0.018 0.019 0.019
0.15 0.027 0.028 0.028
02 0.036 0.036 0.036
025 0.043 0.044 0.044
0.3 0.05 0.051 0.051
035 0.056 0.057 0.057
04 0.061 0.063 0.063
045 0.065 0.067 0.067
05 0.068 0.069 0.07
0.55 0.07 0.071 0.071
06 0.07 0.071 0.071
065 0.068 0.069 0.069
07 0.064 0.066 0.066
075 0.059 0.06 0.06

Find a solution to the Poisson equation with the fol Viu = p yundary conditions:

u a =ua =u —b =ub =0 ,inarectangular regio [—b,bIX{—a,a]

Solution:

To show the method by applying several sets, a polynomi ¢, solution and then a trigonometric

solution will be presented.
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% 2 2 %
Be U= x> —a ¥y —b

So S = da x* —a 1V —F
And ¢ =Vu—p=2a 1y -8 420 x* & - p.

Soon

£¢, = [ eDdt = OVk = 1.2, .n
0

"B d = rr e.Sudxdy = I V2u — p| Sudxdy = 0
[fesan = ] fesisty= ] [

L] o

substituting u in the above expression, knowing that @ = ¥

7}l2“ vi=bt +20 3 —a —,u], a v —b x* —a® dxdy =0
a-b

p

and by integrating, it is obtained o = ~|———
@t + b

5
8

soon

5 2 > 2 2
= —[ p ﬂ] y -k x—-a
8la? + &

Let then be the given polynomial solution:
se = (5/8)[p/("2+b"2) ] ("2-2"2) (y"2-b72).

Let's consider a=1, b=1 and p varying
a:=-10 b:=10

p:-10

x:-0..a y:--0..b
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312.5 i309.37800:i284.378262.5 i234.37200

£159.378112.5

309.37806.28

P97i281

.53

P59.87932.03:198

£157.78111.375

300

297

288

273

252

225

192

153

108

284.37

P81.53:273

258

.7 8%

238.87

213.28

1l 82

:145.03:1102.37%

262.5

259.87

252

238

B87220.5

196.87

S 68

133.87

4.5

234.37

£32.03

D25

213

28

1196.87

575.78

150

1119.5384.375

200

198

192

182

168

150

128

102

72

159.375157.781153i145

.03

i133.87519.53{102i81.28 1

357.375

L]
sa® ..' 'I.. .-. ®
cﬂ e o DD OD Dﬂp o
200 © . o o o7 o*
® L [ ] -. L L o (-]
® 0@ ® - ° ° o o* e .
® gt iy e o —i'.——-..b’ 10
. . . - - . -®
. . . ® - - -* ._-'
10 * * . . . . - . o° "
u
kemx Jny
B- Let be now t = ZZO’ COS[ —— |€OS] —— | 4 function that satisfies the boundary

conditions and belongs to a set LI, i.e.:
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y R—ﬂ: 'Tr;
f{:os[—r ]cos [j_l‘ ] - a‘sk
2a 2h J

k'?l-__ WIET]
—Y] COS[L‘L] then the dot product, € =¢ =0 i.e.

- COSs
2a 2b

f (.'}VQ u p {:} d* () =

g}

Substituting the expressions of the given functions, integrating and solving the following results:

64a’b’p
oo 7'k k2?4 jla?

Therefore, the solution sought is:

- ZZ 64a’b’p .CcOS ke ]cos 7
T ] i 2b

|| wtkj. B*b? + b 2a

Let then be the given polynomial solution:

. T (64-2-b2-p) R
| A A T R T T )

Let's consider a=10, b=10, and p=10. Be the solution in Mathcad below:
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m :=3.141

Le4. ‘.P)

zZ Z
Ux,y = Y Y

i

I
7o J-kcoskk-n : ﬂ)-coskj-n EJJJ

| i Kb+ i a

(

k=1 j=1
0 1 2 3 4
0 32855 324 505 312.471 292 742 265 806
1 324505 320.51 308.624 289.139 262.534
2 312.471 308.624 297178 278.415 252.798
3 292.742 289.139 278.415 260.837 236.837
u= 4 265.806 262.534 252.798 236.837 215.045
5 232325 229.465 220955 207.005 187.958
(& 193.124 190.747 183673 172.076 156.243
7 149 168 147.332 141.868 132.911 120.681
8 101.539 100.289 a6.57 90.473 82.148
9 51.41 50777 48 894 45 807 41.592
10 0.015 0.015 0.014 0.014 0.012

— . Yy ol
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A solution in Matlab is given below for problem b): with a=4; b=6 and p=5, with a step

h=0.5, generating 8 points in the x direction and 12 points in the y direction.

function exempZb mg
% exemplo 2b do capitule 12 secac 12.4 métodeo de Galerkin ‘\nabla*Zu=p

% em uma regifo retangular {|-b,bl =z |-a,al}
% face simetria, soluclc em {10,kl x [0,al}
clo;

global a b p
disp('Valores Default: a=b=p=10"});

a = input ('Entre cocm a dimenséo x: ') ;
if a =0
a = 10;
end
b = input ('Entre cocm a dimenséo y:  ');
ifb=—20
b = 10;
end
p = input ('Entre com o terme independente: ');
ifp=—20
p = 10;
end
x = 0:0.5:a;
w = (B3l Balse
[~,~] = meshgrid(x,y);
[nx,~] = =zize(x");

[~ my] = size(y);
zZl = zeros(nx,my);
Z2 = zeros(nx,my);
for ix=l:nx

for iy=l:my
2l (ix,iy) = uxy(=({ix),y(iy},3);
22(ix,iy) = uxy(x{ix),v(iy),4};
end
end
zZl
Z2
figure (1) ;
subplet (2,2,1),
gsurfc(zl), title('ul = Aprox com 1 termo')
subplet (2, 2, 3}
surfc(Z2) ,title('u2 = Aprox com 2 termos')
subplet (2, 2, 2}
% contour (£21, 20, 'ShowText', 'on') ,title('contorno de ul')

contour (21, 20),
title('contornoc de ul')
subplet (2, 2, 4}
contour (22, 20) ,
title{"contorno de u2')

function [A] = uxy(X,¥,n)
auxl = g4* (a~2)* (b*2) *p;
A= 0;
for k=1:n
for j=l:n

aux2 = (p1td)*k*¥{ (K°2) * (b°2)+(372) * (a*2) ) ;
aux3 = cos (k*pi*X/ (2%a)) *cos (j*pi*¥/ (2%b));
4 =L + auxl¥*auxd/aux2;

end %for j
end % for k
% B(X, Y

end % function uxy
end
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u1 = Aprox com 1 termo contorno de u1

50 Y —
0
6
4 /)
‘ | |J

2 4 6 8 10 12

contorno de u2

c. Let us now consider the case of flow in a channel of unit depth when the velocity in the y-direction

is zero (v=10)

. . . . ¢ u 3 v . . . .
The continuity equation is: = j_ + f}_:he viscosity of the liquid v = 0 only For confined u — u y flow

¥ 7
and forced convection, the equation of momentum in the x-direction is:

9*u
an*

s an p
Md_.'_\"ﬂ =_d_'p+]“_
ox ay Ox

P

With,ux :vy =0
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ax ET

Integrating twice with respect to y , we get:

0_ dﬂ :i original
7 )
h apy L d 1%integracdo em v
i y2 a
_hy dj - + i 2°*mntegraciio em y
arrumando se tem
u d{;
B 2_ dx EI E

which defines the flow between parallel plates, called the Poiseiville flow.

Using Galerkin's method, you get:

k

!' jfx) +,u—4—]-c“ & =

Being u of the form « _ asen(_y / h) entdo & _ sm(_y / k) that taking the integral above and realizing

it, we find:

4.0 @
T “Ox

Which produces the following function

H =

A op Sm{ y]
h

3
L (b-

Analysis

The weighted residue methods presented are difficult to apply in practice, as
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Because of this, the tentative functions need to satisfy all boundary conditions - essential and
natural. Functions need to fulfill these requirements because they use error minimization to satisfy the

differential equilibrium equation
Exercises

1 - Consider the adjoint eigenform of Bessel's inhomogeneous equation

"y x? = 1) * (v S x) yleom 1 <x <2

with y1 =y 2 = 0.ximation of y by the method of:

Galerkin
Placement
Moments
Minimum
Square

Compare solutions

2 - The extension of a square plate under unit force applied to the edges, reduces the solution of the
biharmonic equation V¥u = 0. Given a square of side equal to 2, with the following boundary

conditions %y =y, =u, =0 ew, =11-)" In addition, at the contours x=1and y = I

-

Viu  —4u ir.".rufr

a - Show that the corresponding functional is J = ]

[
1]

b - Verify that the appropriate shape functions are defined by:

2 2 .2 3.2
P, xy X VoY 1 1,x%7

¢ - Use the Galerkin method, with a single coefficient and show that the solution is close to that

obtained by the Rayleigh-Ritz method:

) S 2
up xy = 004253 x* — 1 ¥y —1

3 - For the deformation of a beam on an elastic base in dimensionless variables, it is:
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U Hu=1 \ithu =u" =0 for zero deflection and zero bending moment at the edges x =0 and

x=1.
Choose shape functions sin @y .sin 37x o find an approximate solution.

d du
4 - The nonlinear problem s [M“)'d—x] 0 in0<x<1 represents the steady-state heat conduction
on a plate with conductivity k£ # and dimensionless temperature at the contours of u 0 =0 and
ux =1 . For ¥ u =1+u and polynomial shape approximation functions 1xx2, calculate the

residual and approximate function by each weighted residuals method presented. Compare the solution

-

&

you found with the exact solution u x = 1+ 3x "o,

5- Be determine the deflection in a cable of L =10mom g — 98 m/s ., » = lke/mand 7 — og N,

.. . .=l
at positions L/2 and L/4. The equation that governs the problem is: - (1. i} —pg 0<x <L.

a - Use Galerkin's method, using P, ax =a sinl%] .
b - Use Galerkin's method, using b, ax =a, Sm[% ¢ a, sin L] )
¢ - Use Galerkin's method, using: P, a,x = a,sin I% - a, sin [% t a, sin | f%] .

6- In the previous problem, including the term due to the elastic foundation, the equation is

_i(;% Lhu = —pg with k=24.5 N/m.m = foundation stiffness. Use Shape Functions
ax ax

polynomials of type . P» =apx + - +ap"n =132,..n Compare the values found with the exact

solution: sen(L /2 — x /2)  senh(x | 2)

senh(L /2)

1(x) 0.4,

When approximation functions ¢ are continuous polynomials by parts over Q . As in the

definition of the method let be the system of equations:

o= —p=0 4.2.1)
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with the essential and natural boundary conditions & » | =g & u L_ g onT ,where,
as already seen above, differentiable, etc.

Let ul be an approximation function that satisfies the boundary conditions and formed by the
combination of functiore; belonging to a linearly independent and complete set and more, being

continuous by part defined over Q. Without loss of generality, one can consider 2 = 0.1. Let then be a

partition, F, 0 =X <X <X, <X, =1 with each subrange of length , §j = %1%

o
so that =0, = ¢! x |xep

hj =X =X _4

It can be shown that Qn is a finite vector space of dimension m whose basis is formed by the
"

functions @ ; ;-

Figure 8 Continuous function by part in [xi-1,xi+1]

@,
a X, X, Xy o
In the normal process, all
u inrq (4.2.2)
i=1
with residue
o= —p =[S ad I L (4.2.3)

which must be orthogonalized with respect to the same approximation function ¢k, i.e.:

&, & ['-Wm 0% = 12,...n (4.2.3)

If the operator ---is linear, the above equation yields a system of linear equations from which
The ak coefficients can be obtained:

st = [ @0, 6d2= [podQvik =12..n (4.2.4)
1] i
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With
Byl f & ¢, o), Wik 1.2,...n

(9]
P o f pogdll, Wk =12, .n
LB

or in the matrix form | Ae =p that can be solved by a method presented in volume 1 of this work.

(4.2.5)
T
& |u1 y e
_ T
Ao=poip=lpé Py — po, |
104 Lo T IR S 1 |

Opdy Oy 0,0

., Oy Dy, SRR

When using MRP in any of its variants, one of the most important things is the proper choice
of approximation functions. This choice gives the importance and power of the method, in which the
known information of the problem is incorporated into the approximate solutions. In low-order
approximations or with the use of few approximation functions, a good choice influences the result,
however, in cases of high-order approximation this influence is minimized and this influence is
replaced by the desired numerical convergence order. Thus, the rate of convergence becomes
preponderant.

Thus, the initial step is to choose a set of approximation functions that satisfies the largest
number of boundary conditions of the problem, noting that this set of functions needs to be linearly
independent and complete. In general, polynomials are complete and LI, because any function can be
expanded in terms of the former.

The completeness condition of the function set ensures that the solution can be expressed with
a sufficient number of terms to do so.

There are two essential conditions for the proper choice of the set of approximation functions:
meeting the conditions of symmetry and the conditions of contour. If the boundary conditions are of

the approximation type and z *¥ =/ x.

zxy =fxy 4+ ay xy (5.1.1)
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Wherc¢¥: = 0 outline. These functions, in the simplest cases, can be polynomials that must obey
boundary conditions and symmetry conditions. Boundary conditions that include derivatives must also
be obeyed, and it is convenient to combine the residue of the differential and boundary equation.
Always try to use orthogonal polynomials and their combinations to fit the boundary conditions
whether they are first, second or third species, and they give computational advantages when
implemented, due to their simplicity. Transcendental functions can also be used, but in general it
increases the difficulty of programming and has an additional computational cost when compared to
the use of polynomial functions.

In problems that are time-dependent, it is convenient to expand the solution in spatial terms so

that they satisfy the boundary conditions
Z xt fx + SA, X, x (5.1.2)
i=1

The functions Ai ¢ are determined by approximate methods as well as the initial conditions.
On eigenvalue problems of type

Lu+ AN 1u=0
B;i = 0, &= 1,2,...,mno contorno (5-1-3)
Where £ A are generic differential operators. In most cases you have . InA/u=u 1, the

problem has a solution only for discrete values of the eigenvalue . In this type ) f problem the goal is
to approximate the eigenvalues and eigenfunctions, thus expanding the approximation function into a

series of functions, each satisfying the homogeneous boundary conditions given in (12.5.16):

(5.1.4)

n
-
u Lc-rur, By, 0 no contorno
i=1

The approximation function above is substituted in the differential equation to form the

residue, the which should be ugly orthogonal with respect to the weighting functions w

0

P

2:| Wi, Lu; + A ow, My, lc
i=1
ou (5.1.5)

£:|A_ﬂ £AB, |e, = 0
i=1
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This set of n homogeneous linear equations for the constants ci has a non-trivial solution if

and only if its determinant is zero:

det A; +AB; =0 (5.1.6)

The above equation is a polynomial A of degree n and has n roots, which are the
approximations of eigenvalues. Usually these roots are distinct and real. Due to the equivalence to
variational methods, Galerkin's method is preferred to be applied and because under certain conditions

the eigenvalues are stationary or not sensitive to errors in the approximation of the eigenfunctions.

Example
Be the problem
Y4 ANTl—x2y=0 -y 0 v 1 0 (5.1.7)

This problem is complicated by the 1-x2 factor; Without it the exact solution is known and is

given by

[

[
bt
a2

(5.1.8)

I
B

The above functions (solving the problem without the term 1 — x2 ) meets the boundary
conditions and provides a good source of approximation functions; polynomials are also a good

source such as

o
y=cC, .~.m|?] (5.1.9)

\2
W . X
— " —l— ¢y sin| —
2 2

Soon the residue will be given by

?f] (5.1.10)
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y
y
v
By making the orthogonal residue the weighting function (which in the case of Galerkin's
method, are the approximation functions sin *% themselves) using the properties of the scalar

product, we have

21 1
o rqm’ T by ,\.f 1-x2 sin2| ldx =0 (5.1.11)
2. 2 : 2
0 0
21
o r:-:in2 . ]d_r
21 =z
P A= 4 5317
f 1.2 sinzli dx
.1} 2
In a second approximation using (5.1.6) we have
ST
/1{,r = 27 -1 i fsin 2i -1 -*i‘ sin 2f —1 *E‘ dx =
, o
- 2j-1" = t"_r,r
1
B, = J‘}“ 1-x* sin 2i-1 2 sin 2/ -1 & dx (5.1.12)
1 1 -y
2 2 2 1 2
- _1"'“‘1/;_;‘1+1/5+,'_12‘
3 s b=

"

Writing a program in Matlab to solve the problem:
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e PROBLEMA DE RAUTO VALOR Y"+\LAMEA (1-x"2)¥=0 —
S Y=c(I)SIN(PI.x/2)

S PELO MRE - GALEREIN: (W,Luj= 0

§ ======== det (R(3,i) + \lambdaB(j,i)) = O

e

clearvars; clc;
N = input ("Entre com N nimero de lambda=s & achar:"):
if N <=1
N = 2;
end
disp('Problema de Rutovalor'):
A = zeros (N, N):
E = zerocs(H,H):

for i = 1:N
for j = 1:H
if i == j
deltaij = 1;
B(j,i) = (1./3) - 1. / ((pi~2*({2*3j-1)"2)):
else
deltaij = 0;
parcl = 1. / (i-j)~2:
parc2 = 1. / (i+j-1)"2;:
parcl2 = parcl + parc2;
parcd = (=1.)"(j+i+1):
B(j,i) = parci*parcl2/pi~2:
end
Af{j, i) = —((2%j-1)2* (pi~2/8) ) *deltai];

end

end
syms lambbda
delta = det (A+lambda*B) ;
5 = solve(delta):;
raizes = vpa(s5):;
for k = 1:N
fprintf("\n Lambda %i = %f', 6 k,raizes(k)):

end

Running the above program for N=2, 3, 4 and 5, for example, we get the following results

For Zi roots:
5.1253 45.5428 0 0 0]
51222 39.6799 136.700 0
51218 39.6711 106.3614 296.5355 0

5.1217 39.6644 106.2795 206.4257 544.6093

These are approximate values; The actual values for the first 3 eigenvalues are:

A =5122; A =3966; Ay =1063
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