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ABSTRACT 

This research material suggests the exploration of 

approaches to deal with variational problems 

through approximation techniques. In mathematical 

contexts, variational problems involve optimization 

of functions, and approximation methods seek to 

find approximate solutions to these problems. These 
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approaches can be essential in situations where 

finding an exact solution is challenging or 

impractical, allowing for the effective analysis and 

resolution of complex issues through approximation 

techniques. 

 

Keywords: Approximation methods, infinite 

series, MATLAB, boundary conditions.

  

 

 

1 INTRODUCTION 

Previously (see volume 1 of this work) functional was defined as any numerical function 

established on a linear space . It could also be said that functional are the variable magnitudes 

whose values are determined by the choice or choice of one or more functions. 

This chapter has been added to this volume to give a stronger foundation when presenting 

variational and energetic methods. 

Before beginning to describe  the Calculus of Variations, we will present some concepts and 

definitions that are believed to be useful to better develop the understanding of the object of this 

chapter. 

 

Definition 1: Let              denote x approaches x0 from the left and let be                    denote x 

approaches  x0  from the right If  

 

(1.1.1) 

 

It is said that f x is discontinuous in x 0 , otherwise it is continuous in x 0 . 

 

Definition 2: A function is said to be continuous by parts in any interval if it has a finite number of 

discontinuities in the given interval. 

 

Definition 3: A function is said to be differentiable at x0 if the limit exists. It is said to be part 

differentiable in any interval if it has a derivative on the right and left for every inner point of the 

interval under consideration, and, moreover, these derivatives are equal except at a finite number of 

points. 

 

 

(1.1.2) 
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Definition 4: Let be the function                                    where each variable is a function of other 

variables, like this                                     . Then the partial derivative of v with respect to a given 

variable ui is given by:  

 

 (1.1.3) 

 

Resolution 5: The quantity 

 

(1.1.4) 

 

is the derivative dg/dx  of some function g xy of some function                    At this event,  

                                       that is 

 

 

 

(1.1.5) 

 

Resolution 6: If 

 

(1.1.6) 

 

So 

 

(1.1.7) 

 

If, and only if,  

 

ensures that                is a continuous function of  € and x in              . In case x1 and x2 are strictly 

constant, i.e., independent of €, the right-hand side of the above expression reduces to its final term 

since  

 

Definition 7: In order to repeatedly employ the piecewise integration rule, it is necessary and 

sufficient that the functions f and g are only partially differentiable in the given interval  

 

(1.1.8) 
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Definition 8: A function                                                          is  said to be homogeneous of degree n, 

in the variables                             if, for an arbitrary constant h , we have:  

 

(1.1.9) 

 

Any function for which the above expression is valid satisfies Euler's theorem: 

 

(1.1.10) 

 

Definition 9: The required condition for a minimum (or maximum) of a function  

in relation to the variables,                                    it satisfies the relationships: 

 

(1.1.11) 

 

and 

 

(1.1.12) 

 

where Ck are constants and Constants introduced as unknowns and called Lagrange multipliers, are 

calculated together with the minimization (or maximization) values of by means of a set of equations 

formed by (1.1.11) and (1.1.12). 

 

Resolution 10: The line integral of a function f(x, y, z) from point P1 to point P2 along a curve 

C is defined by: 

 

 (1.1.13) 

 

Where                                              being           length of the  arcs of the C curve between the points 

 

                         and                 The integral (1.1.13) can also be represented in the form: 

 

 

(1.1.14) 
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Introducing parametric equations where t grows 

In the direction of growth of s , one can calculate (3) by the definite integral 

 

(1.1.15) 

 

 

With. 

 

An important example of a line integral is made counterclockwise over a sharp curve in the xy plane. 

In this case, the parameter t is chosen in such a way that at the                   run the curve C 

counterclockwise when t grows from t1 to t2 , The integral above is equal to the area contained in C. 

 

(1.1.16) 

 

 

Resolution 11:Changing variables                                                and  

In the calculation of the triple integral is done by: 

 

(1.1.17) 

 

 

where f  is the function F expressed in terms of  u,v,w where Ω*  is the region Ω described by the 

variables u,v,w  and where                                       is the Jacobian.    

 

Resolution 12:If                     is a continuously differentiable function of x and y , the area of a 

portion of the surface represented by this function is given by  

 

 

 (1.1.18) 

 

where the integration is performed over a domain Ω the x-y plane over  which a portion of the 

projected surface is given. 

Be Ω a closed and limited region in the plan xy whose outline consists of finite very smooth 

curves. Are f x,y and g x,y continuous functions having partial derivatives with respect to x 

and y in some subdomain contained in Ω . Then the integral exists along the entire Ω contour, such 
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that it is on the left when moving in the direction of integration, i.e., the line integral must be 

evaluated counterclockwise. 

 

(1.1.19) 

 

 

Example 

Let w x,y  be a continuous function with continuous second-order partial derivatives in a domain Ω of 

the xy plane  , of the type indicated by theorem 1.  

 

(1.1.20) 

 

Let them be                                   then, exist and are contained in Ω. Let be the Laplacian of w:  

 

(1.1.21) 

 

 

The right-hand side of the integral equation that defines Green's theorem in the plane can be 

developed by the definition of the line integral, like this 

 

(1.1.22) 

 

 

where s is the arc length of       . The integrator of the last integral above, can be written as the 

scalar product of two vectors:  

 

(1.1.23) 
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and  

 

(1.1.24) 

 

that is 

 

(1.1.25) 

 

where n is a normal vector      , since the tangent vector a 

 

(1.1.26) 

 

 

is orthogonal to nthat is n  . u  = 0 . On the other hand, the product scalar                                 w . n is 

the directional derivative of w in the direction of n; denoting this scalar product by                   

and taking the expressions found in the formula of Gauss's theorem, we have 

 

(1.1.27) 

 

Also, on the expression of Green's theorem, if  and,                                       we get: 

 

(1.1.28) 

 

 

which is the integration formula for double integrals. If in the above expression you do  

                                                        and from analogous modulus as above, we find an important result 

of Green's theorem: 

 

(1.1.29) 

 

 

1.1 FUNDAMENTAL THEOREM OF CALCULUS 

Two forms of the fundamental theorem of calculus will be used, the first for the function-

gradient pair and the other for the gradient-Hessian pair. 
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Motto 1a: Be f Twice continuously differentiable                    in the vicinity of a line segment 

between the points and      So if you have 

 

 

(1.1.30) 

 

 

Lema 1b: Let f be twice continuously differentiable                            in the vicinity of a point              

              so for                        with                    small enough, if you have 

 

 

(1.1.31) 

 

 

At this point it would be good for the reader to read chapter 2 of volume 1 of this work 

(reference [4]), specifically in sections 2.6 to 2.8. By way of recall, some definitions already 

established in the above-mentioned reference are presented. 

 

1.2 FUNCTIONAL 

 

Resolution 13:  Let be a set,                a subset,                         and the set of the real numbers. 

Defines itself as functional f about X to mapping f :X        . Functional logo is a numeric function 

whose set of values of f  is given by Rf : 

 

(1.1.32) 

 

In this chapter we will always have                    the vector space of n dimensions. Thus, a 

typical of element                   is written as follows: 
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Definition 14: For neighborhood of x with radius       as a subset            , given by: 

 

(1.1.33) 

 

Where ‖.‖ denotes the norm of Euclidean space defined for all               by: 

 

 

 

 

Definition 15: Let a functional f be defined on                 So               is a local minimizer of f if there            

is              such a that                

 

(1.1.34) 

 

If                                                                          then     is a local strong minimizer of f  Similarly, one 

can define local maximizer and local strong maximizer. 

 

Resolution 16: (global minimizer). Be a functional f set on                          . So              It's a  Global 

Enemy from f if there is a             such that 

 

(1.1.35) 

 

1.3 GRADIENT 

Resolution 17:(Gradient). Be                     then the gradient of f in              is the vector given by 

 

(1.1.36) 

 

 

If   f                                               then      is a strong global minimizer of f . 

Similarly, one can define global maximizer and global strong maximizer. 

  

Analyzing the behavior of the quadratic functional in the open neighborhood (open ball) of  a 

local minimizer         using Taylor's          expansion over as a basic tool, it will be seen that two 

entities appear depending on whether the given functional belongs to  C 1  X or  C 2 X – where C m X 

represents the set of functionals for which partial order derivatives exist and are continuous in   
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The first entity is called a gradient (defined by                               ) and the second is  

called Hessian 

 

1.4 HESSIAN 

     Resolution 18:(Hessian) Be                   . So the Hessian of f in             is the symmetric matrix 

given by 

 

(1.1.37) 

 

Or 

 

 

 

 

 

 

Taylor's expansion of the functional f over x is conveniently expressed: 

 

If there will be  

(1.1.38) 

 

If X, by  

 

(1.1.39) 

 

Note that in general, if f           , you will have 

 

 

(1.1.40) 

 

 

Resolution 19:Be                    .   It's said to be stationary in              if we have the gradient at this 

zero point, i.e., g     = 0 . This is equivalent to saying that if at any point on               functional the                                                                                                                       

                     gradient (first derivative) is zero, then at              one has a stationary point. 
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Theorem 2: Let                                     If is a local minimizer of  f  , then f is stationary at  

 

Proof: 

In,                                                                      putting             ,  

then                                                                           Assuming f  is not stationary in                            ,  

then for sufficiently small values of n one has to ,                                                 i.e. ,  

in which case it cannot be a local minimizer . 

 

Theorem 2 above is a necessary but not sufficient condition for it to be        a local minimizer. 

The sufficient condition is given by the following theorem: 

 

Theorem 3: Let                 X and let f be  stationary in  

Then                 it is a strong f local minimizer  if the Hessian H       matrix is positive-defined (SPD) 

Remember that it was learned in Linear Algebra that the necessary and sufficient conditions 

for a symmetric matrix A to be positive defined are: 

 

1  

 

2  

 

3 All upper submatrices Ak of A must have det  

 

4 All di ́s pivot (without line swapping) has to be  

 

Proof: 

 

From                                                                                         , assuming the gradient is null 

 

 

   

(1.1.41) 
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Since by hypothesis H       is definite positive, then there exists a positive number         (which can be 

given by the smallest eigenvalue of H      such that 

 

 

 

Like this                                                                 f  and its right-hand part must be positive for 

sufficiently small values of         , from which one takes                               in some vicinity of  

.  

Another form of the previous Theorem 3 is: 

 

Theorem 3a: Let                          and be stationary in  

So               It's a Local Strong Minimizer from f if or gradient g              and the matrix of the 

Hessian H       is positive-defined. Be then                 datum; by Taylor's theorem, for small values of                                                                                                                                                                                           

              such that f                                 soon: 

 

 

 

 

(1.1.42) 

 

 

 

 

 

One can analogously define the  local maximizer case  of f , so if                 it's a local maximizer, 

then              it needs to be a  stationary point, and if h      is negative defined it's going to be a strong 

local maximizer. 

It's easy to show that if It's stationary, so 

1. if H       has positive and negative eigenvalues,    it is neither a local minimizer nor a local 

maximizer;   

2. if H      is semi-defined positive (negative) it may or may not be a local minimizer 

(maximizer). 
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Figure 1 Representation and Maximum and Minimum 

 

 

1.4.1 Directional Derivative 

Resolution 20:(directional derivative). Be                                              and be        Where                                                                                                       

                . The morder directional derivative of f in x  in the y-direction  is given by: 

 

 

(1.1.43) 

 

The directional derivative of f can be computed by the differentiation chain rule: thus, if f           

if you have 

 

 

(1.1.44) 

 

 

 

If , si has 

 

(1.1.45) 

 

 

Rewriting the expression of                   using Cauchy-Schwarz inequality                      

                                                    If you have 

 

  

(1.1.46) 
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Where      is the y direction where f 1 x; y is maximum. 

 

In other words:  f 1  x; y = 0 in all directions y if and only if ,  that is, if the  point x is a stationary 

point of f . 

  

Similarly: f 2 x; y to all directions y if and only if                  (Hessian hue is positive-defined). 

These conclusions allow us to state two fundamental theorems (which will not be demonstrated 

here). 

 

Theorem 4:Be                    . If              is a local minimizer of f So f 1 x; y = 0 in all directions y . 

 

Theorem 5: Let              . Suppose that for some of you                 if you have         

in all directions y. So               it's a strong local minimizer of  f  if f 2  

in all directions y . 

 

Resolution 21:Let f set on               and let be              , where Rf is an interval of f ; Then the set 

 

Using Matlab to generate contour lines, you can write (for example): 
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Figure 2: Contours generated by matlab 

 

 

A known fact is that if it       belongs to a surface (or curve) of level Lk , then the gradient vector                            

o            or g x   is perpendicular to Lk at      and at all points where the direction of the functional 

increases most rapidly. 

Therefore, gradients  near a local strong minimizer point  outward while those near a local 

strong maximizer point inward. 

In general, numerical methods for finding a strong local minimizer of a functional are most 

agile when the level surfaces in the vicinity of the minimized are spherical, and are more difficult when 

they show a marked distortion of the shape of a sphere. Define the distortion measure of Lk of the 

spherical shape (perfect spherical shape: Dk = 1 ) as the quantity 

 

 

(1.1.47) 

 

 

 

Where Sk is the set of all points inside Lk . 

 

2 VARIATIONAL METHOD IN PROBLEMS WITH FIXED BOUNDARIES 

2.1 PRELIMINARES 

Equation Section (Next)Variational calculus aims fundamentally to investigate the maxima and 

minima of the functionals and is very similar to the investigation of maxima and minima of functions. 

Therefore, in this section, we seek to introduce the fundamental concepts and the main properties of 

the variational method. 

A functional is usually represented by an integral of the type: 

  



 

 
Harmony of Knowledge Exploring Interdisciplinary Synergies 

Variational or Variance Calculus 

(2.1.1) 

 

Definition 1: It is called variation or increment        of the functional argument J f  , unlike two 

functions F1 X and F 0 X , belonging to the same class of functions M , considered for the functional 

J f  : 

 

(2.1.2) 

 

For a class of Ck functions         , i.e., k times differentiable, we obtain 

 

(2.1.3) 

 

Definition 2: The functions f1 x and f0 x defined in a range [a, b] are said to be close to zero order or 

null if in the definition range there is if  

 

(2.1.3) 

 

In general, these functions are said to be close to order k, if: 

 

 

 

(2.1.4) 

 

 

 

 

And so if F1  x and f0 x are close to order k, they are close to any order 

 

2.1.1 Distance between functions of a functional 

Definition 3: It's called the distance between                                       , with    

to the metric defined in this space by: 

 

(2.1.5) 
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Generally, it is called the nth order distance between                               

With                    the highest of the maximums of expressions of type 

 

(2.1.6) 

 

 

or 

 

(2.1.7) 

 

 

2.1.2 Neighbourhood 

Definition 4: The function f0 x with the function is called  €  -nth order neighborhood (see item 1.3.6) 

wit                 to the set fi of functions whose nth order distance from them to f0 x are less than €: 

 

(2.1.8) 

 

If the €-neighborhood is of zero order, it says that it is a strong €-neighborhood of f0 x while the first-

order €-neighborhoods is called a weak €-neighborhood. 

 

Definition 5: A functional J f defined in a M of functions, is called continuous in     

In the sense of the proximity of nth order, if whatever the number is,                  there is a number 

 , such that inequality 

 

(2.1.9) 

 

is fulfilled for all permissible  functions f x , i.e. for all functions of meet the conditions 

 

 

(2.1.10) 

 

 

 

In other words, one always has to 
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(2.1.11) 

 

Example: 

 

Demonstrate that the functional                                     considered in space C1[0,1] is 

continuous  in the function f * x=x in the direction of first-order proximity.  

Solution: Let                 it be and we will show that there is a number                such that 

 

 

 a)   

Whenever 

 

 

b) 

Like this 

 

 

 

Be it then                 . Therefore, for all functions                               such that conditions (b) are 

satisfied with                     condition (a) will also be satisfied, i.e.    

 

 

 

 

2.1.3 Functional increase 

Definition 6: Given a functional J  f defined on a class M of functions f x , the magnitude: 

        

                                                  (2.1.12) 
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is called  the functional  increment corresponding to the increment  of  the argument. 

 

Definition 7: If the functional increment        of J f can be represented in the form 

 

                      (2.1.13) 

 

where L is a linear functional with respect to                   when                  then the linear increment 

with         respect to i.e., , L  f  x,         is called variation of the functional and  

is represented by       . In this case si says that the functional J  f is differentiable at the point f x . 

 

Definition 8: Let be a linear functional J f ,  x dependent on the elements f  x and x 

 

(2.1.14) 

 

 

2.1.4 Bilinear shape 

Definition 9: J is said  to  be a bilinear form if it is  a linear functional with  respect to  f for fixed  x 

and a functional for  x   with fixed f x, i.e.  

 

 (2.1.15) 

 

 

2.1.5 Quadratic Functional 

Resolution 10: A Linear Functional J x,x Dependent on the elements x and x , i.e. a bilinear form with 

f x=x , it's called Quadratic Functional. 

 

Definition 11: A quadratic functional is said to be a positive functional defined if J x,x > 0 whatever 

element x is non-zero. 

 

Resolution 12: A Linear Functional J f  defined on a normed linear space has second variation if its 

increment 

 

(2.1.16) 
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can be represented in the form 

 

(2.1.17) 

 

where L1 is a linear functional, L2 a quadratic functional, and               when .                 The L2                                 

c      functional  is called the second variation or second differential of the J f functional and is called  

Quadratic functionals will be studied in more detail in a later section. 

 

2.1.6 Functional extremes 

Resolution 13: It is said to be a functional J f Reaches its maximum in the f0 x function  If the values 

it takes the functional J f in any function close to f0 x are not greater than J f  That is 

 

(2.1.18) 

 

How                                                       It is said that J f Achieves the strict maximum 

  

for function f0 x . Similarly, if you define or minimum of the functional in a function f0 x when                                        

x                      for all curves near f0 x . 

 

Example 

 

Demonstrate that the functional                                      dx achieves a strict minimum in the y x  

function y x 

Solution: Whatever it is y x  There is 

 

 

 

And what's more   ,  

 

Resolution 14: It is said to be a functional J f achieves your Strong relative maximum in the f0 if  

 in all permissible functions f belonging to a - Null-order neighborhood of the 

function f0. Similarly, if define Strong Relative Minimum of a functional when  

Resolution 15: It is said to be a functional J f achieves your Weak relative maximum or weak in                         

.                           function f0 if in all permissible functions f   belonging to a - First-order function 

neighborhood f0. Similarly, if define Weak relative minimum or weak of a functional when  
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The maxima and minima (strong and weak or weak) of a functional J f are called relative 

extremes. The extreme referring to the totality of the functions in which the functional is defined 

is called the absolute extreme. 

Every absolute extreme is at the same time a strong and weak relative extreme, but not 

every relative extreme will be an absolute extreme. 

 

Example 

 

Let the functional J f                                 , in the function space                                  , that satisfy 

the conditions  

On the x-axis segment           it has a faint minimum of J f that is  in a - first-rate 

neighborhood. In fact, it has been              if,                 on the other hand, the functions belonging 

to - first-order neighborhood, if has                  , so that the integrative is positive for                      

and therefore the functional cancels out only if             . That is, the functional reaches a weak 

minimum in the curve            . 

 

Theorem 1: Necessary Condition of Functional Extreme. If the differentiable functional J f reaches 

its extreme value on a curve ,                     where f0  is an inner point of the functional definition 

field, then in               we have 

                                      (11.2.19) 

The functions for which              , are called stationary functions. 

 

2.1.6.1 Exercises 

1. Determine the order of proximity of the curves below: 

 
 

2. Determine the distance between the curves below: 
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3. Find the first-order distance between curves                        and         in the segment 

4. Analyze the continuities of the following functionalities: 

                                                                                                     in the sense of proximity of null order. 

 

                                                        , in the sense of zero-order and first-order proximity. 

 

5. Analyze whether the following functionalities are differentiable: 

 

 

6. For the functionals below, determine, in the corresponding spaces, their variations. 

 

2.1.7 Elementary Problem of Variational Calculus 

Be the functional one  

 

(11.2.20) 

 

Where                                                 . The elementary problem of variational calculus is to find the 

function that offers the extreme weakness to the functional (11.2.20) and that satisfies the boundary 

conditions: 

 

(11.2.21) 

 

Let  f x , by hypothesis, be the  solution function of the problem, and let h  x be another function which 

differs from f x a certain quantity: 

(11.2.22) 

 

Where         ,  is a continuously varying parameter, and is         an arbitrary function that 

satisfies the following boundary conditions: 
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(11.2.23) 

From (11.2.22) and the figure below, we have 

(11.2.24) 

 

In this way, you can rewrite the functional (11.2.20) to the h x function, such as: 

(11.2.25) 

 

 

 

 

Where from (11.2.24) can be seen 

(11.2.26) 

 

 

Since the value of the functional  J varies continuously with , by Taylor's formula, one can 

develop J , as well as   

 (11.2.27) 

  

 

or in variational notation  

(11.2.28) 

 

Where  

 

It is known that the stationarity condition of a functional is                                                     either                          

. Therefore, differentiating (11.2.25), we have: 

(11.2.29) 
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From (11.2.23) and (11.2.26) we have to 

(11.2.30) 

 

 

 

Taking (11.2.30) in (11.2.29) is  

(11.2.31) 

 

 

Because  

 

 

Integrating the second term of the equation (11.2.31) in part obtains 

(11.2.32) 

 

 

The last term of the right-hand side of (11.2.32) is null and void since what  

 is true and valid for any and all permissible functions. Thus equation (11.2.32) becomes:  

(11.2.33) 

 

 

The Basic Motto of Variational Calculus is now enunciated: 

 

2.1.7.1 Basic Motto of Variational Calculus 

Motto: If a and                    are fixed constants and G x is a continuous function belonging to C a,b 

What if 

(11.2.34) 

 

 

for every continuously differentiable function         that satisfies the conditions                              one                        

can conclude that G x               for the entire interval   . 

From the basic motto and from (11.2.33) it can be seen that  

(11.2.35) 
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which is the  Euler  equation or Euler-Lagrange equation. The integral curves of Euler's equation are 

called extremes or Lagrange curves. 

 

2.1.7.2 Euler–Lagrange equation 

Theorem 1: The necessary condition for the functional 

(11.2.36) 

 

 

defined in the set               and that satisfy the boundary conditions                                                

and , reach its extreme value in the  f x is that this function checks the Euler-Lagrange equation 

(11.2.35): 

 

 

 

This condition is necessary for the weak extreme; But as every strong extreme is also at the same 

time weak, any condition for the weak extreme will also be a condition for the strong extreme. 

Example: 

Be the functional one  

 

The Euler–Lagrange equation will be                    Solving the differential equation (Euler–Lagrange 

eq.), we have   

 

 

 

Using the boundary conditions, we find,  

 

Therefore, the extreme can be reached in the function:  

 

2.1.7.3 Exercises 

Find the Euler–Lagrange equation and the function in which the given functional can reach 

extreme, to: 



 

 
Harmony of Knowledge Exploring Interdisciplinary Synergies 

Variational or Variance Calculus 

 

 

Theorem 2: Let f x be the solution of the Euler–Lagrange equation. If  the function  

has continuous  partial derivatives up to and including the second order, then the function  

has a second continuous derivative at all points x,y  for which 

 

 

Theorem 3: (Bernstein). If in the equation                                the  functions I         are continuous at 

every finite point x, f , for any finite value of        and there is still a constant             and functions 

(11.2.38)   

 

 

limited in any finite portion of the plane, such that 

(11.2.39) 

 

 

 

Then, through any two points of the plane                     and of  different abscissas                passes 

one and only one integral curve                 of (11.2.39).  

 

Examples 

1. Demonstrate that through any two points of the plane of distinct abscissas passes a single extreme 

function of the functional 

 

 

Euler's equation for the above functional is:                                 if it is in the format (11.2.37) of 

Bernstein's theorem, then one can apply it. In fact, we have: 
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In the expression  of Iy  , it is seen that whatever the value            of is positive,  

then in addition,  

Comparing it with the second expression of (11.2.39) of Bernstein's theorem, we see that: 

 

 

and that also satisfies the condition (11.2.38) , passes a single extreme function xy   

J y . 

2. Demonstrate that there is no end of the functional                                                that passes through 

any two points of the plane of distinct abscissas. 

Solution 

Euler's equation for the given functional has the form: 

 

 

Analyzing the above expression, it can be seen that Bernstein's theorem can be applied, since the 

expression fulfills the extreme condition (11.2.39) of the given functional. 

So let there be any two dots, for example            and          . Rewriting Euler 's equation of the given 

functional, making  

 

 

 

Separating the variables, we have:                                            that by integrating we have 

 
 

So 

 
 

where C is a real constant. Separating the variables and integrating from  (0,0)  to (1/2,2), we obtain: 
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Looking at the above expression, it can be seen that whatever the real C is, the denominator will be 

complex in a certain interval of                      the variation of y . Therefore equality is 

impossible. This means that no extreme can be drawn from the points considered, so Bernstein's 

theorem fails here. 

 

2.1.7.4 Exercise 

The equation of an ellipse is known to be derived from the condition that the sum of the distances 

from any point A on it to two other fixed points                                                    is constant. Find the 

tangent and the normal to an ellipse at any point A. Find the angles between the F1A, F2A, and 

normal lines at point A. 

 

2.1.8 Generalizations of the Elementary Problem of Variational Calculus 

Let us now find the Euler–Lagrange equation for the functional of type 

(11.2.40) 

 

 

where              are the dependent variables. Be then 

(11.2.41) 

 

 

 

 

known values. Here, in this case, not Only                                          is it zero in a and b, but also   

                         is null at the contour points, so 

(11.2.42) 

 

 

Being                       Integrating the last two terms in order to place under the sign of the integral only 

the terms multiplied by      , we have:  

(11.2.43) 
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and 

(11.2.44) 

 

 

2.1.8.1 Fourth-order Euler–Lagrange equations 

You can then rewrite the expression                   as follows: 

(11.2.45) 

 

 

 

 

since the permissible functions are such that                           in                            then the boundary 

terms, in the above expression, are null and the Euler–Lagrange equation has the following form:   

(11.2.46) 

 

 

which is a fourth-order differential equation. 

 

2.1.8.2 Higher-Order Euler–Lagrange equations 

Generally, for functionals of the type: 

(11.2.47) 

 

 

for which the function f            and             the derivatives of f will be assumed to be known  

in              . In this case we have:      

 

(11.2.48) 

 

Or 

(11.2.49) 

 

 

where the different terms must be integrated in parts until the integrating is multiplied only by     . A 

typical term for piecewise integration is: 
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(11.2.50) 

 

 

 

 

 

 

or in a more compact form: 

(11.2.51) 

 

 

 

 

Euler's equation for functionals of this type then has the following form: 

(11.2.52) 

 

 

or 

(11.2.53) 

 

 

Example 

Finding the extreme function of the functional: 

 
 

Solution: 

Euler's equation for this problem has the form: 

 

 

That is 
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Hence,                        which integrates we have: 

 

Taking into account the boundary conditions, we find 

 

 

Therefore, the extreme function sought after is:  

 

They are now functional with several functions as dependent variables, which is the case with many 

engineering problems. Consider the functional 

(11.2.54) 

 

 

with the following boundary conditions: 

(11.2.55) 

 

 

 

Let be                  two permissible functions that satisfy the above boundary conditions and are such 

that they define the following functions: 

(11.2.56) 

 

 

With                                                            and where f  x and g x  are extremal functions             and 

And       are their variations. Like so:    

(11.2.57) 

 

 

that is: 
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(11.2.58) 

 

 

For           , remembering tha                       t        and, we have: 

(11.2.59) 

 

 

 

 

 

 

By integrating the terms              in the above expression, we get: 

(11.2.60)   

 

 

 

 

The last two terms of the above expression are zero due to boundary conditions, and the terms 

multiplied by             and are also null, since and are            arbitrary. Thus, Euler's equations are:   

(11.2.61) 

 

 

 

Generalizing to shape functionals: 

(11.2.62) 

 

 

with the distinct functions and with the following boundary conditions: 

(11.2.63) 

 

 

then we get the following system of Euler's equations: 

(11.2.64) 
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Examples   

1. Find the extremes of the functional                                                                      with the following 

boundary conditions:  

 

Solution: 

Applying the above theory, one finds the following system of ordinary differential equations: 

 

 

 

whose solution is of the type: 

 

 

 

Applying the boundary conditions, we have:  

 

so the extremes request is: 

 

 

2. Finding the extremes of the functional 

 

with the following boundary conditions: 

 

 

Solution: 

Similar to what was done in the previous example, Euler's equations  are: 

 

 

From this, eliminating the function z, we obtain: 

 

 

which is an ordinary fourth-order differential equation, the generic solution of which has the form: 
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Applying the boundary conditions y 0                                                                    so that: 

 

 

The function z is determined from                            the condition Thus, 

 

 

 

Applying the boundary conditions now                                          we get: D = 0 and B = any arbitrary 

number. Like this: 

 

 

From this it follows that the extremals of the given functional are the family of curves: 

 

 

with  arbitrary B. 

 

2.1.8.3 Exercises: 

Finding the extremes of the functional: 
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2.1.9 Principle of Least Action 

As physics is well known, the success of the universal principle of minimum potential energy 

used to determine the equilibrium position of a system stimulates the search for a universal 

analogous principle with the help of which it may be possible to determine the possible motions of a 

system. This led to the discovery of the principle of least action. 

Let us first be a special case: suppose a particle of mass m in motion along the x-axis under 

the action of a force with potential U x . As is well known from physics, the equation of particle 

motion is 

(11.2.65) 

 

 

It is easy to choose a functional for which the last equation is precisely an Euler equation. Denoting 

can be rewritten  

(11.2.66) 

  

 

This last form is a reassembly of Euler's equation, which in the case of the desired function x t must 

have the form: 

(11.2.67) 

 

 

As in both the above expression (11.2.67) and the previous one (11.2.66) the function F is derivable 

on both sides, and considering the sign of the equation above, it can be seen that the derivatives are 

zero, so that they are 

 

 

(11.2.67), if you have 

(11.2.68) 
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So the desired functional is 

(11.2.69) 

 

 

Note that the term                is precisely the kinetic energy E  of the motion of the particle. Thus, 

denoting the integrative as                          , si has the so-called Lagrangian function. Thus, the 

variational problem consists of looking for the stationary value of the integral: 

 

 

That is known as the name of "action"; aquit1  and t2 are the start and end time of the 

movement. It can be seen that in a large number of cases the interval between t1   and t2 is very 

small, and in this situation the integral above has a minimum value and not merely a stationary value 

for the real motion. For this reason, the possibility of thinking that the movement through the 

procedure from the variational problem to the integral above is called the principle of least action. 

It is important to note that the variational principle of least action is universal in nature and 

remains valid for any closed system not involving energy dissipation, e.g., via friction; incidentally, a 

dissipative system can, in a sense, be considered open. According to this principle, of all the ways 

devised (under given constraints) of moving from one state at time  t1 to another state at time t2, the 

system chooses the mode for which the action assumes a stationary value (minimum, as a rule). 

Here, the Lagrangian function L is the difference between the kinetic energy and the potential 

energy of the system, each of these energies expressed in generalized coordinates of the system and 

its temporal derivatives. Thus, the principle of least actions is applicable both to systems with a finite 

number of degrees of freedom and also to continuous media, and not only mechanical, but also 

electromagnetic and other phenomena. 

 

Examples 

Let the application of the principle of least action to determine the equation of the transverse 

oscillations of a membrane satisfy Laplace's equation, with the condition of 

contour                   (data) . The kinetic energy of an element  by membrane  

  

is equal to                   , where is the density of the membrane surface, so the total kinetic energy of 

the membrane is 
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Whereas the voltage in the membrane remains unchanged in the vibration process (voltage T), then 

the accumulated potential energy is  

 

 

So the Lagrangian function and the action are: 

 

 

Applying Euler's equation with respect to the independent variables (see equations (11.2.65) and 

(11.2.72)), we find the membrane oscillation equation: 

 

Let be a dynamic system such as the pendulum which is characterized by a body of mass m subject 

to an actuating        element represented by a rod of length l in which the torque applied to the 

actuator is u. As is known from physics, the movement of the pendulum is performed in a circular 

way where a variable      measures the angular  position in relation to the vertical and its derivative 

represents the angular velocity; there is also a force of gravity acting on the system that acts directly 

on the mass and a drag that is proportional to the angular velocity. 

From the theory of variational calculus and physics, it is worth remembering that, in the case of a 

dynamically with n degrees of freedom and with generalized coordinates                 and with 

generalized external forces              , this is described by the following Euler–Lagrange equation: 
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Given this information, one can model the pendulum, defining what its kinetic energy is, considering 

that the linear velocity in relation to its angular velocity is                          (r the radius of the 

circumference of its motion):  

 

 

On the other hand, the potential energy of the pendulum system is given by the difference in the 

height of the pendulum in relation to its vertical position, given by: 

 

 

The pendulum drag due to my motion in the air is proportional to the loss function of Rayleigh sees 

to angular velocity, and is given by: 

 

 

Thus, given that the Lagrangian functional is given by                    , then the Euler–Lagrange 

equation is given by  : 

 

 

Hence the equation of the nonlinear model of the actuated pendulum  

 

 

Below is a program to solve the equation of the nonlinear model: 
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Running this program you have the following graphic output for the position and angular velocity    : 
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2.1.9.1 Functionals That Depend on Functions of Multiple Independent Variables 

Be the functional one 

(11.2.70) 

 

 

for which we want to analyze the extreme, and whose boundary conditions on the border          of the 

region        are known. 

Be         an admissible function that satisfies the boundary conditions and has continuous 

derivatives to the desired degree and that 

 

 

Like this 

(11.2.71) 

 

(11.2.72) 

 

(11.2.73) 

 

 

Integrating the second and third terms of the above expression into Green's Theorem, we obtain: 
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(11.2.74) 

 

 

 

Taking these results into     , we have: 

(11.2.75) 

 

 

 

 

Or, since                   satisfies the boundary conditions in      , the second integral of the above 

expression is zero, so the stationarity condition is:  

(11.2.76) 

 

 

Since the variation of       is  arbitrary (a      imposes only general constraints on continuity and 

derivability, annulment in the boundary, etc.) and the first factor of the integral above is continuous, 

then from the Basic Lemma the function               that performs extreme in the given functional is: 

(11.2.77) 

 

 

This second-order differential equation in partial derivatives (11.2.77), which is the Euler equation of 

the functional (11.2.70), is given the particular name of  the Euler–Ostrogradski equation. 

 

Examples of this type of functional are: 

                                dxdy whose corresponding Euler–Ostrogradski equation  is of the form  

which is Laplace's equation. In addition, finding a continuous solution of this equation  in    ,  with 

contour values in known       , is a problem called the Dirichlet problem, which is fundamental to 

mathematical physics and engineering; it is a typical stationary heat conduction problem. 

 whose corresponding Euler–Ostrogradski equation is  of the form , which is the Poisson equation.  

                                                               whose corresponding Euler-Ostrogradski equation is of the 

form                            , which is Poisson's equation.                                              
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                                                     which is the functional whose minimum solves the problem of 

determining a surface of minimum area bounded by a given contour, has its corresponding Euler-

Ostrogradski equation of the form 

 

 

Generalizing to a functional of type 

(11.2.78) 

 

 

whose Euler's equation is: 

(11.2.79) 

 

 

Another type of functional that appears in engineering problems is of the type: 

(11.2.80) 

 

whose Euler equation is of the type: 

(11.2.81) 

 

 

 

 

An example for this type of functional is  

 

whose Euler's equation is                                           , or if                   It                     represents the 

vertical deflection of an isotropic plate under bending, and                         uniformly distributed 

loading on the plate                                    and the stiffness of the plate, the                       the equation 

represents the equation of the  bending of an isotropic plate under vertical load p uniformly 

distributed on it,  If, on the other hand, the previous functional depended on derivatives higher than 

the second-order one, we would have: 

(11.2.82) 

 

Euler's equation is: 
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(11.2.83) 

 

 

In a functional type: 

(11.2.84) 

 

Euler's equation represented by the following system: 

(11.2.85) 

 

 

 

 

An example of this type of two-dimensional functional is one that represents the internal energy of a 

plate in the flat state of tension: 

 

 

where And = modulus of elasticity; h = thickness of the plate;   = Poisson's coefficient; u and v 

The displacements in the directions x and y . Euler's equations for the functional above, represent the 

equilibrium equations for the plate in terms of x,y, and are as follows: 

 

 

2.1.9.2 Exercises 

1. Show that the conditions necessary for the stationary character of integrals: 
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are respectively 

 

 

at  the contour       where s is the length of this contour. Finding the extremes of the functional 

 

 

2.1.10 Quadratic Functionals 

Definition 1: It can also be defined as being a quadratic functional, to the   

                    ,  defined on a class V of functions f x, if it satisfies the identity (see definition 11 

above): 

(11.2.87) 

 

 

 

Definition 2: A quadratic functional is a functional in form 

(11.2.88) 

 

 

 

As previously seen, the gradient and Hessian of the above functional are easily found: 

(11.2.89) 

 

 

Thus, it can be seen that the Quadratic Functionals have the constant Hessian. 
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Taking     as a stationary point of     , then the gradient cancels out on it and you have 

 

Making                       in the quadratic functional has 

(11.2.90) 

 

 

  

]Being        symmetrical and                 The set of auto solutions        then 

(11.2.91) 

 

 

 

Defining the Diagonal Matrix  whose diagonals are the eigenvalues of H and the matrix               

n whose columns are the eigenvectors of H We have: 

 

 

As defined                          it is seen that the matrix V is orthogonal, i.e.                   and     

Thus, the following expression is reached: 

  

 

Doing in                           the previous expression if you have 

(11.2.92) 

 

 

 

 

Looking at the expression (11.2.92), we see that 

• If H  is SPD (symmetric and positive defined) then its eigenvalues are all positive 

and the interval  of f  is                               and z is a global minimizer of f. 

• If H is  negative defined, the range of f where the eigenvalues are located is  

 It's a Global Strong Maximizer. 
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• If H has positive and negative eigenvalues, the interval of f is ,               in is                         

,                   stationary, because it is neither maximum nor minimum. 

 

Note that when H for SPD (symmetric and positive defined) and when           the  Level 

surface Lk (equation (11.1.47).) It's the ellipsoid: 

(11.2.93) 

 

 

The Dk distortion measure   can be evaluated by the so-called spectral condition number of H1, given 

by: 

(11.2.94) 

 

 

Looking at the following figure, which contains graphs for several quadratic shapes, the following 

can be identified: 

 

FIGURE 3 CHARTS OF QUADRÁTICAS2 SHAPES 

 

 

Figure (a) represents the graph from a Quadratic Form to a positive-defined matrix; 

Figure (b) is the graph representing a quadratic shape that has a negative-defined matrix. 

Figure (c) shows the graph for a singular (and positive-undefined) matrix. The line that runs at the base 

 

1 Do not confuse the spectral condition number defined by (11.2.94) with the condition number of an array with   

to a matrix standard, which is given by  

2 Source: [211] Jonathan Richard Shewchuk, An Introducyion to Conjugate Gradient Method without the Agonising Pain, 

publicado pela School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, em 1994 
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of the valley is the set of solutions. 

Graph (d) is representative of a shape with an undefined matrix. The solution is a saddle stitch. 

The properties of Quadratic Functionals are relevant to non-Quadratic Functionals. 

quadratics in C 2 X . To see this, one must compare Taylor's expansion to 

the Quadratic Functionals (where H is constant) and the Taylor expansion to Non-Quadratic 

Functionals: 

(11.2.95) 

 

 

 

Thus it can be seen that in the vicinity of x the arbitrary functional behaves like a quadratic 

functional. As we have already seen, if you do                                         and remember the directional 

derivatives, you know that 

 

 

for k= 0,1,2 if you have the identity 

 

 

3 DOWNWARD STEP METHOD 

One of the most important methods for asymptotic evaluation of certain types of functional 

problems, including integral problems, is known as the Downward Step Method. This method has its 

origin in the observation made by in connection with the estimation of an integral coming from the 

theory of probability, in the form of: 

(11.3.1) 

 

  

Where f x and g x are real functions that are continuous and defined in an interval           , which can 

also be infinite, with g x                                           Laplace argued that the dominant contribution of 

this when                 it would need to come from the vicinity of the point where g x (or              ) 
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would have its maximum value.  In the simplest case is the situation Where              owning a point 

maximum                          so that 

    

More details can be seen in the work of Paris, R. B. (Richard Bruce), entitled “Hadamard Expansions 

and Hyperasymptotic Evaluation : An Extension of the Method, of Steepest Descents”, veja 

referencia [241] 

Here, as the focus is on a matrix treatment of equations from functionals, we will present an iterative 

method to find a strong local minimizer of a quadratic functional and with Hessian SPD, of the type 

shown in (11.2.88). 

It will be shown that the number of iterations required to ensure that the error under the energy 

standard (energy standard) is less than a number ε times the initial error is limited by: 

(11.3.2) 

 

 

Where         is the spectral condition number of H.  

The concept of preconditioning was introduced in chapter 7 of volume 1 of this work, and it will be 

used here to reduce the above limit. 

In general, the methods for determining a minimizer of a functional f do not        have the form  

(11.3.3) 

 

Wher     is the search direction and        is chosen in such a way as to minimize, or at least reduce, f 

over some interval of the line passing through in        the direction         .   

Thus, there are two associated problems: 

1. the choice of    , and 

2. F Inspection on the line, with  

 

Definition 1: (downward direction). Let be a functional f and  let be the vectors x and d , then there 

exists a number                such that  

(11.3.4) 

 

where d is a downward direction to f at x. 

 

Theorem 1: Let                       and let g be  x  (or             ) the gradient of f in x . If a vector d satisfies 

the                        , so d is a downward direction to f at x.    
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                                  Stationary point 

  

 

Thus we see that an increase  in the direction d there is a  decrease in the value of the function, so d 

is a downward direction. 

 

Theorem 3: Let .                     So of all the search directions d at the same point  x  , the direction to  

which f descends most rapidly is in a vicinity of x in which  

 

Proof: 

Since you want to minimize the directional derivative of f  in x in all directions, you have 

                                                     , this is the same as minimizing                for all y so that you have  

That way you have 

(11.3.5)     

 

Analyzing the problem of determining      data      and         (review theorem 5 above) where f   x is 

minimized over the line     

Any procedure to determine is called a "search line" or "search line".  

For generic functionals, the lines of research are, in general, quite complicated and involve some 

iterative process. In the case of quadratic functionals with the Hessian SPD, the process is simplified 

and a simple formula can be deduced for . If  

                                                                                         

                                                                                    Independence of (11.3.6)  

 

If H is  SPD             then                                          is a parabola in the variable and  is     open 

upwards so that f                 is uniquely minimized by (regardless of the choice of  

(11.3.7) 

 

3.1 DESCENDING STEP METHOD ALGORITHM 

Based on Theorem 3 above, our natural choice for the downward direction d is .                                 

Thus, the iterative process will take place by: 

 (11.3.8) 

 



 

 
Harmony of Knowledge Exploring Interdisciplinary Synergies 

Variational or Variance Calculus 

This relationship, with some strategy of choosing the "line of research", defines the method of the 

descending step, to minimize a generic functional. For a quadratic functional, it was seen that the 

way to determine is:  

(11.3.9) 

 

Based on what has been presented here, the descending step method for a quadratic functional 

follows the following algorithm: 

(11.3.10) 

 

 

 

In the (k+1)-th iteration, the line connecting      to          is tangent to the point         belonging to the 

ellipsoidal level surface given by     

Taking the interative process                                    by pre-multiplying the expression by H and 

subtracting b on both sides, we get:   

(11.3.11) 

 

 

Redefining the previous algorithm has: 

(11.3.12) 

 

 

 

3.2 CONVERGENCE ANALYSIS 

3.2.1 Choosing the Step Size for the Search Line 

For first-order approximations, each step decreases the value of f by approximately                               

                                                   tag. If it's too small, the algorithm will converge too slowly. On the 

other hand, if the step size is not conveniently small, the algorithm may fail to reduce f. A suitable 

way is to adopt a step size so that it is sufficient for the reduction of f,  and the algorithm should 

progress as quickly as possible. This procedure is known as a search line and is employed in many 

other multivariate optimization algorithms.  
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3.2.2 Analysis 

It is necessary to measure the quantitative convergence of every iterative process. One can use the 

notion of how close  x   is  to     using the Euclidean norm                   which is the error defined by 

the classical distance between x and  

Since these are functional and these represent, in general, when they come from a physical problem, 

an energy system, it is more appropriate to measure this error by the quantity.                    Thus, it is 

more important to make                 small than make small              . It is then necessary to define a 

standard for measuring energy: the energy standard. 

 

Definition 2: The  energy internal product and the energy standard corresponding to a  defined 

positive H matrix  are respectively  

(11.3.13) 

 

(11.3.14) 

 

Note that these definitions obey the axioms of internal product and norm respectively. 

 

Note that when H is the identity matrix, the energy dot product and the energy norm reduce to the 

Euclidean  dot product and the Euclidean norm respectively. Designating the square of the energy 

standard by E x , we have 

(11.3.15) 

 

 

Taking the first expression of (11.3.6) and transforming it, we find 
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Soon 

(11.3.16) 

 

 (11.3.17) 

 

are the relationships between the energetic norm  and E  x and the energy or functional f x . Note that  

                                           are constant on every surface level of F. 

Why use energy norms instead of using the Euclidean norm? As can be seen, the level surfaces are 

ellipsoidal, and when the eccentricity increases (making the eccentricity larger) the values of these 

quoted norms become more and more pronounced:                                      

while as                                       can be seen in the following figure: 

 

 

 

To avoid this, the preconditioning technique can be used, where H is exchanged  for a matrix whose 

level surfaces are significantly less eccentric than those of H.  

So, if you are interested in knowing what is the convergence rate of MPD – Descending Step Method 

or Gradient Method.  

 

Theorem 4: Since H is a definite symmetric and positive matrix, then the descending step method (or 

gradient method) is convergent to any choice of the initial Datum          and further, having 

(11.3.18) 

 

 

Where                                  is the spectral condition number of the matrix H and        [and the energy 

norm defined higher up. If in addition, if         is defined for any ,            to be the smallest integer k 

such that 

(11.3.19) 

 

So the smallest integer k that meets (11.3.18) is given by 
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(11.3.20)  

 

3.3 PRECONDITIONING 

What is preconditioning?  

To know this mechanism, we suggest topic 7.7 of the book by prof. Henrique Mariano  

"Analysis and Numerical Methods in Engineering", which will be remembered here: "To reduce the 

spectral conditional number (ratio between the highest eigenvalue and the lowest eigenvalue) of a 

matrix,                 and thus improve the performance of iterative algorithms, one usually swaps the 

original system for another system that has the same solution. It is known that when the conditional 

number of A is large, the matrix tends to be badly conditioned, and it is necessary to condition it."  

Hypothetically, a  symmetric and positive-defined matrix A (SPD) is and an M preconditioner  is 

available.  

 

Definition 3: A preconditioned M is a matrix  that approximates a matrix A in some sense, for 

example  

 

3.3.1 Domestic Product and Energy Standard 

Definition 4: The  energy dot product (or H - dot product) and the energy norm (or H -  norm), 

corresponding to any defined positive matrix, are respectively given by, similarly to the expressions 

(11.3.13) and (11.3.14) for the Hessian matrix and which coincide when   

 

(11.3.21) 

 

 

 

and satisfy all valid properties for Euclidean inner product and norm 

Euclidean. Note that when ,                  the  H-dot product coincides with the 

Euclidean and the  H-norm with the Euclidean norm (as explained above). 

Assuming  that the matrix M is  symmetric and positive-defined, then, from a practical point of 

view, the only requirement  for M to be a  preconditioner is that it induces an easy solution for a 

linear system  

A preconditioned system takes the following form (see eq. (7.7.1) of[4]: 

(11.3.22) 

 

Next, the concept of preconditioning will be applied to a quadratic functional. 
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Let M be  a definite positive symmetric matrix factored into the form  

(lower Cholesky decomposition) and is the quadratic functional, as defined in (11.2.88): 

 

  

where H is positive defined. Defining a functional second           by the transformation ,             we 

have 

 (11.3.23) 

  

  

where 

(11.3.24) 

  

Since, by definition, H is positive definite, it                         is  a similarity transformation, so it is 

also      symmetric and positive definite  

The Similarity Transformation 

(11.3.25) 

  

It reveals that both      and              have the same eigenvalues,                                            so that the 

spectral condition                              number is completely determined by  M  and H since it  

depends on the factorization of M . 

 

Applying the descending step method to the problem (11.3.23), it is seen that it is convenient to use 

the direct calculation of the gradients and then the iterative process is 

(11.3.26) 

(11.3.27) 

(11.3.28) 

 

For                    and being the arbitrarily       chosen starting point one has 

(11.3.29) 

  

The convergence rate of (11.3.29) depends on  . 

  

Making                                                    for  
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4 BOUNDARY VALUE PROBLEMS: VARIATIONAL FORMULATION 

In engineering, the vast majority of problems are formulated as boundary value problems 

(PVC), which can be expressed in the determination of a function that satisfies some differential 

equation in a definition region      and that must satisfy specific conditions in the boundary       of the 

region     . In general, the vast majority of these problems are related to a solution that minimizes a 

functional J  f defined  to functions f belonging to a set of functions V. 

This minimization (or maximization) requires the functional J f to be stationary. Thus, the task of 

solving a PVC is equivalent to finding a function, a function             that makes J f stationary. This is 

the variational formulation of a PVC. 


