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ABSTRACT 
This chapter addresses the effects of nickel (Ni) on soil biological properties, with an 
emphasis on microbial biomass, enzymatic activity, and basal respiration. Although nickel is 
a micronutrient, its accumulation in agricultural soils—often resulting from anthropogenic 
activities—can impair soil microbiota by inhibiting enzymes and altering nutrient cycling and 
the carbon cycle. Microbial biomass and basal respiration are sensitive indicators of Ni levels, 
showing significant reductions at high metal concentrations, while low doses may have 
beneficial effects. Enzymatic activity is also directly inhibited, particularly enzymes such as 
dehydrogenase and urease. Factors such as organic matter content, pH, soil texture, and the 
presence of soil organisms influence the magnitude of these effects. Strategies such as the 
addition of organic matter, the use of Ni-hyperaccumulating plants, and conservation 
management practices are highlighted as alternatives to mitigate nickel toxicity. The chapter 
emphasizes the importance of monitoring the effects of Ni on soil biology and proposes the 
use of microbiological attributes as tools for environmental diagnostics. 
 
Keywords: Microbial Biomass. Enzymatic Activity. Basal Respiration. Soil Microbiota. 
Environmental Diagnostics. Mitigation Strategies. 
 
RESUMO 
Este capítulo aborda os efeitos do níquel (Ni) sobre as propriedades biológicas do solo, com 
ênfase na biomassa microbiana, atividade enzimática e respiração basal. Embora o níquel 
seja um micronutriente, seu acúmulo em solos agrícolas — frequentemente resultante de 
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atividades antrópicas — pode prejudicar a microbiota do solo ao inibir enzimas e alterar o 
ciclo de nutrientes e o ciclo do carbono. A biomassa microbiana e a respiração basal são 
indicadores sensíveis aos níveis de Ni, apresentando reduções significativas em 
concentrações elevadas do metal, enquanto doses baixas podem ter efeitos benéficos. A 
atividade enzimática também é diretamente inibida, especialmente enzimas como a 
desidrogenase e a urease. Fatores como o teor de matéria orgânica, pH, textura do solo e a 
presença de organismos edáficos influenciam a magnitude desses efeitos. Estratégias como 
a adição de matéria orgânica, o uso de plantas hiperacumuladoras de Ni e práticas de 
manejo conservacionistas são destacadas como alternativas para mitigar a toxicidade do 
níquel. O capítulo enfatiza a importância de monitorar os efeitos do Ni sobre a biologia do 
solo e propõe o uso de atributos microbiológicos como ferramentas de diagnóstico ambiental. 
 
Palavras-chave: Biomassa Microbiana. Atividade Enzimática. Respiração Basal. Microbiota 
do Solo. Diagnóstico Ambiental. Estratégias de Mitigação. 
 
RESUMEN 
Este capítulo aborda los efectos del níquel (Ni) en las propiedades biológicas del suelo, con 
énfasis en la biomasa microbiana, la actividad enzimática y la respiración basal. Aunque el 
níquel es un micronutriente, su acumulación en suelos agrícolas (a menudo como resultado 
de actividades humanas) puede dañar la microbiota del suelo al inhibir las enzimas y alterar 
el ciclo de los nutrientes y el carbono. La biomasa microbiana y la respiración basal son 
indicadores sensibles de los niveles de Ni, mostrando reducciones significativas en altas 
concentraciones del metal, mientras que dosis bajas pueden tener efectos beneficiosos. 
También se inhibe directamente la actividad enzimática, especialmente enzimas como la 
deshidrogenasa y la ureasa. Factores como el contenido de materia orgánica, el pH, la 
textura del suelo y la presencia de organismos del suelo influyen en la magnitud de estos 
efectos. Se destacan estrategias como la adición de materia orgánica, el uso de plantas 
hiperacumuladoras de Ni y prácticas de manejo conservacionista como alternativas para 
mitigar la toxicidad del níquel. El capítulo enfatiza la importancia de monitorear los efectos 
del Ni en la biología del suelo y propone el uso de atributos microbiológicos como 
herramientas de diagnóstico ambiental. 
 
Palabras clave: Biomasa Microbiana. Actividad Enzimática. Respiración Basal. Microbiota 
del Suelo. Diagnóstico Ambiental. Estrategias de Mitigación. 
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1 INTRODUCTION  

The biological activity of soil results from the set of processes carried out by living 

organisms present in the soil environment. This activity is fundamental for fertility, nutrients, 

carbon cycling and the maintenance of soil quality. It is primarily driven by microorganisms, 

soil fauna, and enzymes, which interact to transform organic residues that reach the soil, 

leading to the release of nutrients and the formation of soil structure. 

Among the main components of biological activity are microorganisms such as 

bacteria, fungi, protozoa, and actinomycetes, which play essential roles in the transformation 

of organic substances, mineralizing it and releasing nutrients while forming humic substances 

(Nannipieri et al., 2017; Tecon & Or, 2017; Trus et al., 2021; Kurmanbayev et al., 2023). Soil 

fauna, composed of earthworms, mites, nematodes, and other small animals, also contribute 

to biological activity by promoting aeration, mixing, and fragmentation of organic material 

(Trus et al., 2021; Kurmanbayev et al., 2023). 

Other components of soil biological activity are enzymes such as β-glucosidase, 

phosphatase, urease, arylsulfatase, cellulase, and dehydrogenase, which catalyze essential 

reactions for the cycling of carbon, nitrogen, phosphorus, and sulfur. These are considered 

important indicators of biological activity (Adetunji et al., 2017; Levakov et al., 2021; Barbosa 

et al., 2023). 

Several factors affect the magnitude and expression of soil biological activity. One of 

the most commonly used indicators is microbial biomass (SNB), which represents the amount 

of living microorganisms and is directly associated with the mineralization of organic residues 

(Barbosa et al., 2023; Kurmanbayev et al., 2023; Memoli et al., 2018). Organic matter, in turn, 

plays an essential role as a source of energy and nutrients, strongly influencing both microbial 

and enzymatic activity (Memoli et al., 2018; Trus et al., 2021; Barbosa et al., 2023). 

Soil enzymatic activity has been widely used as an indicator of soil quality and as a 

tool to assess the effects of different land uses and management practices (Adetunji et al., 

2017; Levakov et al., 2021; Barbosa et al., 2023; Kurmanbayev et al., 2023). Additionally, 

abiotic factors such as pH, soil texture, clay content, nutrient availability, and the presence of 

potentially toxic trace elements (PTTE) influence the composition and dynamics of the 

microbial community (Barbosa et al., 2023; Memoli et al., 2018). 

The ecological functions performed by biological activity are broad and include 1) 

nutrient cycling by transforming organic residues into forms assimilable by plants (Adetunji et 

al., 2017; Trus et al., 2021; Kurmanbayev et al., 2023); 2) the formation and stability of soil 

structure, with direct impacts on water retention, erosion resistance, and nutrient-holding 

capacity (Trus et al., 2021; Tecon & Or, 2017); 2) its role as an indicator of environmental 
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quality since high levels of biological activity are directly associated with productive and 

sustainable soils (Adetunji et al., 2017; Barbosa et al., 2023; Kurmanbayev et al., 2023). 

Nickel (Ni) is a PTTE commonly found in soil because it is part of minerals that are 

part of the composition of the original rock, but its concentration in the soil increases as a 

result of human activities. Although it is a micronutrient for plants in small amounts, at high 

concentrations it can be toxic to both plants and soil microbiota, directly affecting enzymatic 

activity and, consequently, soil health. 

In the agricultural and environmental context, Ni has been extensively studied for its 

toxic effects. Research aiming to establish its role in plant nutrition has focused on elucidating 

Ni's role in the nitrogen cycle (Kutman et al., 2014; Alibakhshi & Khoshgoftarmanesh, 2015), 

particularly due to its connection with the enzyme urease, of which it is a part of the enzyme 

active site. 

For plants, Ni is an essential element (Bai et al., 2006), but its accumulation in the 

environment can result in phytotoxicity, harming plant growth and development (Ahmad et 

al., 2009). 

Nickel uptake by plants is influenced by various soil and plant factors. The main factors 

affecting Ni phytoavailability in soil include pH, redox potential, texture, mineral composition 

(particularly the content and types of clays and Fe, Al, and Mn oxides), soil profile 

characteristics, cation exchange capacity (CEC), organic matter, the presence of other trace 

elements, and other factors that influence microbial activity (Kabata-Pendias & Pendias, 

2001). 

The presence of nickel significantly impacts plant enzymatic activity, especially 

enzymes related to nitrogen metabolism and protection against oxidative stress. Nickel acts 

as a cofactor for enzymes such as urease, involved in urea hydrolysis, and superoxide 

dismutase, which helps eliminate free radicals. These enzymes are related to plant growth 

and development, and the proper presence of nickel is essential for their efficient functioning 

(Andrade, 2023). 

In this sense, scientific research is crucial to help advance the understanding of 

nickel's effects in soil–plant systems, determine nutritional and toxic thresholds for different 

crops, and assess its effects on soil microbiota. It is also important to define the total and 

available levels of this element permitted in soil, which is key for creating regulations on the 

use of residues in agriculture such as sewage sludge, for example. 
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2 NICKEL IN SOIL AND ITS BIOLOGICAL EFFECTS 

Enzymatic activity is a direct reflection of the presence and activity of the microbiota, 

both of which are essential for ecological processes and soil fertility. The relationship between 

them is influenced by environmental factors and soil properties, but microbial diversity and 

biomass are key determinants of the intensity and diversity of enzymatic activities (Table 1). 

Soil chemical properties (carbon content, nutrients, pH) explain much of the variation 

in enzymatic activity, but microbial abundance and diversity also play an important role (Tan 

et al., 2021; Ren et al., 2021; Piotrowska‐Długosz et al., 2022; Xiao et al., 2024). 

Environmental factors such as temperature, moisture, and substrate availability affect 

both microbiota and enzymatic activity (Ren et al., 2021; Daunoras et al., 2024; Xiao et al., 

2024). Changes in land use, climate, and agricultural practices alter microbial composition 

and, consequently, the enzymatic profile (Daunoras et al., 2024; Ren et al., 2021; Yudina et 

al., 2023). 

 

Table 1 

Main factors influencing the relationship between enzymatic activity and soil microbiota 

Factor 
Relationship with Enzymatic 

Activity 
Reference 

Microbial diversity Increases enzymatic diversity (Xing et al., 2024); Caldwell, 2005 

Microbial biomass Increases enzymatic activity 
Frankenberger & Dick, 1983; 

(Piotrowska‐Długosz et al., 2022) 

Soil properties 
Influence microbiota and enzymatic 

activity 

(Tan et al., 2021); (Ren et al., 2021); 

(Xiao et al., 2024); (Piotrowska‐

Długosz et al., 2022) 

Environmental factors Modulate the relationship 

(Daunoras et al., 2024); (Ren et al., 

2021); (Xiao et al., 2024); (Yudina et 

al., 2023) 

 

Soil enzymes are mainly secreted by microorganisms and play a central role in the 

decomposition of organic substances and in cycle of elements (carbon, nitrogen, phosphorus, 

sulfur, and others) (Caldwell, 2005; Wang et al., 2023; Daunoras et al., 2024). 

The activity of enzymes such as phosphatases, glucosidases, and dehydrogenases is 

strongly correlated with microbial respiration, microbial biomass, and microbial community 

diversity (Frankenberger & Dick, 1983; Caldwell, 2005; Xing et al., 2024). Enzymatic activity 

profiles can indicate the diversity and complexity of the microbial community, reflect the 

structure and function of decomposition and biosynthesis processes in the soil (Caldwell, 

2005; Xing et al., 2024). 
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Dehydrogenase is often used as an indicator of overall microbiological activity and soil 

quality, as it reflects the ability of microorganisms to perform essential metabolic processes. 

Studies have shown that nickel contamination significantly reduces dehydrogenase activity. 

Trace elements and their compounds generally reduce soil enzymatic activity significantly 

(Nowak et al., 2000). 

Urease, dehydrogenase, and phosphatases are sensitive to nickel, and are 

recommended as bioindicators of its contamination (Wyszkowska et al., 2018; Liu et al., 2018; 

Boros-Lajszner et al., 2017; Kucharski et al., 2009; CAI ET AL., 2005). 

Most studies show that nickel contaminated soils exhibit significantly reduced activity 

of urease, dehydrogenase, acid and alkaline phosphatases, arylsulfatase, and β-

glucosidase. The degree of inhibition depends on the nickel dose, being more pronounced at 

high concentrations (Helaoui et al., 2020; Wyszkowska et al., 2018; Liu et al., 2018; (Boros-

Lajszner et al., 2017; Kucharski et al., 2009; CAI ET AL., 2005). 

Wyszkowska et al. (2018) investigated the effects of different nickel concentrations 

(100, 200, 300, and 400 mg Ni/kg soil) and observed a significant reduction in dehydrogenase 

activity with increasing nickel doses. The inhibition of dehydrogenase by nickel may be due 

to the metal's interference with microbial metabolism and its binding to enzyme active sites, 

preventing their normal function. 

Kucharski et al. (2009) confirmed that nickel contamination negatively impacts the 

activity of dehydrogenases as well as other soil enzymes such as urease and phosphatases. 

Adding cellulose to contaminated soil partially mitigated these effects, highlighting the 

importance of management practices that reduce nickel toxicity. The authors noted that 

enzyme sensitivity to this trace element follows this order: urease > dehydrogenase > alkaline 

phosphatase > acid phosphatase > catalase > arylsulfatase > β-glucosidase. 

Assessing dehydrogenase activity appears to be a more objective indicator of nickel 

contamination than urease activity, as dehydrogenase response is less soil-type dependent. 

Burns (1982) also supported the suitability of measuring dehydrogenase activity to determine 

soil biological conditions. 

Nickel in soil can also induce oxidative stress, leading to the production of reactive 

oxygen species (ROS) that damage microbial cells and inhibit enzymatic activity (Xia et al., 

2018). 

In soils naturally low in nickel, moderate addition can stimulate urease activity because 

nickel is an essential cofactor for this enzyme. However, this positive effect is limited to 

deficient soil and low does (Dalton et al., 1985; CAI ET AL., 2005). 
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Kalembasa et al. (2014) also observed that nickel doses above 75 mg/kg soil 

significantly inhibited dehydrogenase activity. Their experiment included three factors: 1. 

doses of nickel added to the soil (0, 75, 150, and 225 mg/kg soil), 2. liming (0 and 1 Ca source 

according to 1 Hh of hydrolytic acidity), 3. organic materials (rye straw and lignite/brown coal). 

Nickel bioavailability and speciation in the soil are key factors influencing the intensity 

of its effects on enzymatic activity. The most bioavailable fraction is the one soluble in acetic 

acid or extracted by DTPA, which shows a strong correlation with the inhibition of soil 

enzymes. Mitigation strategies, such as the application of organic compounds like humic acid 

extracted from manure, have shown effectiveness in reducing this bioavailable fraction of Ni, 

helping to minimize the toxic effects of this trace element on enzymatic activity (Liu et al., 

2018; Cai et al., 2005). 

The presence of other contaminants, such as flotation reagents like xanthates, used 

in cellophane production, mineral flotation, and organic syntheses can also increase the 

bioavailability and toxicity of nickel in the soil environment, amplifying the inhibition of 

enzymatic activity (Li et al., 2018; Li et al., 2020). 

To mitigate the toxic effects of trace elements in soil, several strategies can be 

implemented. The application of organic compounds, such as biochar derived from açaí 

seeds, can enhance the soil's nutrient retention capacity and reduce the bioavailability of 

these contaminants (Mendonça et al., 2024). Liming can neutralize soil acidity, decreasing 

nickel solubility and its toxicity to soil microorganisms (Vischetti et al., 2022; Kalembasa et 

al., 2014). Studies showed that the addition of organic materials such as rye straw and brown 

coal reduced nickel's negative effects, suggesting these practices may be effective in 

maintaining enzymatic activity in contaminated soils (Kalembasa et al., 2014). 

The adverse effect of nickel on soil enzyme activity can also be alleviated by enriching 

the soil with cellulose, combined with fertilization using ammonium sulfate (Kucharski et al., 

2009). 

 

2.2 MICROBIAL BIOMASS AND BASAL RESPIRATION 

Soil microbial biomass and basal respiration are fundamental indicators of soil 

biological activity. There is a positive relationship between these two parameters, as soils 

with higher microbial biomass tend to exhibit higher basal respiration rates, reflecting greater 

microbial metabolic activity. However, this relationship can be modulated by various factors, 

including environmental conditions, soil quality, and the physiological state of 

microorganisms. 
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Soils with higher microbial biomass generally show higher rates of basal respiration 

because there are more active microorganisms involved in the decomposition of organic 

matter and the release of carbon dioxide (Cheng et al., 2013; Dash & Kujur, 2024; Hofman 

et al., 2004; Yang et al., 2023). Basal respiration, in turn, reflects the maintenance metabolic 

activity of these microorganisms and is widely used as an indicator of the soil's decomposition 

potential (Cheng et al., 2013; Dash & Kujur, 2024; Hofman et al., 2004). 

The quality and quantity of organic matter present in the soil are determining factors 

in this dynamic. Soils rich in organic carbon and with adequate moisture levels simultaneously 

promote increases in microbial biomass and basal respiration (Yang et al., 2022; Dash & 

Kujur, 2024; Hofman et al., 2004; Yang et al., 2023). Moreover, the physiological state of 

microorganisms is essential for interpreting this relationship, since basal respiration is more 

strongly correlated with active microbial biomass than with total biomass, given that dormant 

microorganisms contribute insignificantly to respiration (Hofman et al., 2004). 

Environmental factors such as temperature, moisture, pH, and the presence of heavy 

metals exert strong influence over microbial biomass and respiration and can substantially 

alter the relationship between them (Insam, 1990; Richter et al., 2018; Salazar-Villegas et al., 

2016; Yang et al., 2023; Liao & Xie, 2007). 

Organic matter and moisture tend to increase both microbial biomass and basal 

respiration (Yang et al., 2022; Dash & Kujur, 2024; Hofman et al., 2004; Yang et al., 2023). 

Temperature can positively affect both by promoting greater metabolic activity (Insam, 1990; 

Salazar-Villegas et al., 2016; Yang et al., 2023). Conversely, the presence of heavy metals 

reduces these parameters, indicating potential toxicity (Liao & Xie, 2007). High levels of active 

microbial activity also contribute to the simultaneous increase in biomass and basal 

respiration (Hofman et al., 2004; Yang et al., 2023). 

 

3 METABOLIC QUOCIENT (qCO2) 

 The soil metabolic quotient (qCO₂) is a key indicator of how efficiently soil microbiota 

utilize carbon. It is calculated as the ratio between basal respiration (CO₂ emission) and 

microbial biomass. Low qCO₂ values reflect greater microbial efficiency in converting carbon 

into biomass rather than losing it as CO₂. Conversely, high values suggest lower efficiency 

or the presence of environmental stressors that increase microbial maintenance energy 

demands (Cheng et al., 2013; Insam, 1990; Richter et al., 2018; Liao & Xie, 2007). 

Degraded or stressed soils often exhibit an imbalance in this relationship, with 

disproportionately high respiration relative to microbial biomass, indicating dysfunction in the 

soil system (Dash & Kujur, 2024; Liao & Xie, 2007). In contrast, uncontaminated soils tend to 
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show lower qCO₂ values, typical of balanced ecosystems with healthy and efficient microbial 

activity. This is commonly found in areas with native vegetation or under sustainable 

agricultural management, where organic matter is abundant and environmental stress is 

minimal (Pimentel et al., 2008). 

Nickel (Ni) contamination can significantly disrupt microbial biomass and respiration, 

depending on concentration, exposure time, and soil conditions. High levels of Ni generally 

reduce both microbial biomass and basal respiration, indicating toxicity and impaired 

microbial functioning. This results in increased qCO₂, as microorganisms expend more 

carbon to sustain basic survival, reflecting reduced metabolic efficiency (Malhan et al., 2020; 

Oorts et al., 2007; Yin-Gan, 2004; Li et al., 2015; Moreno et al., 2003). 

Studies indicate that Ni concentrations above 100 mg/kg can reduce microbial 

biomass by over 75%. However, at lower doses, Ni may initially stimulate microbial activity—

a hormetic response (Xia et al., 2018; Oorts et al., 2007; Cai et al., 2007). Nickel also alters 

microbial community composition, impacting microbial groups with varying sensitivities to the 

metal (Yin-Gan, 2004; Li et al., 2015). 

Despite its toxicity, some nickel-tolerant microorganisms can adapt or proliferate in 

highly contaminated soils, increasing microbial biomass and functional diversity (Helaoui et 

al., 2020; Kucharski et al., 2009). Nonetheless, basal respiration typically decreases with 

rising Ni levels due to microbial stress and reduced activity (Morawska-Płoskonka, 2013; 

Malhan et al., 2020; Oorts et al., 2007). 

These effects may diminish over time through soil processes like metal immobilization, 

which reduces Ni bioavailability. Environmental factors such as organic matter, 

hyperaccumulator plants, and earthworm activity can also mitigate the harmful impacts of 

nickel on microbial biomass and respiration (Helaoui et al., 2020; Xia et al., 2018; Yin-Gan, 

2004; Moreno et al., 2003). 

In conclusion, high nickel concentrations compromise microbial biomass and 

respiration, directly harming soil health and biological activity. Given their sensitivity to heavy 

metals, these microbial parameters serve as effective indicators of environmental stress. 

Soils with high biological activity are typically associated with more productive and 

sustainable ecosystems, emphasizing the importance of monitoring these indicators for 

assessing soil quality (Vieira et al., 2016; Barbosa et al., 2023; Kurmanbayev et al., 2023; 

Adetunji et al., 2017). 

Therefore, high levels of nickel compromise microbial biomass and respiration, directly 

harming soil health and biological activity. The sensitivity of these parameters to Ni makes 

them valuable indicators of environmental stress caused by heavy metal contamination. Soils 
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with high biological activity are generally associated with more productive and sustainable 

environments, reinforcing the importance of monitoring these indicators to assess soil quality 

(Vieira et al., 2016; Barbosa et al., 2023; Kurmanbayev et al., 2023; Adetunji et al., 2017). 

 

4 FINAL CONSIDERATIONS 

The presence of nickel (Ni) in the soil significantly affects the biological and functional 

properties of the edaphic environment, particularly microbial biomass, enzymatic activity, and 

basal respiration. Although nickel is an essential micronutrient at low concentrations, its 

accumulation in the soil, mainly from anthropogenic sources, can lead to toxic effects, 

inhibiting microbial metabolic activity, compromising essential biogeochemical processes, 

and reducing soil biological quality. 

The sensitivity of enzymes such as dehydrogenase, urease, and phosphatases, along 

with changes in microbial community composition, demonstrates that these parameters can 

serve as reliable bioindicators for diagnosing soils contaminated by potentially toxic trace 

elements. 

The importance of mitigation strategies is evident, such as the application of organic 

matter, liming, and the use of hyperaccumulator plants, which can reduce nickel bioavailability 

and consequently alleviate its adverse effects. The relationship between microbial biomass 

and basal respiration (qCO 2) has been shown to depend on the physiological state of 

microorganisms and environmental factors and is strongly impacted by high nickel 

concentrations. 

Therefore, deepening our understanding of the nickel–soil–microbiota interaction is 

essential for developing sustainable management practices aimed at preserving soil health, 

ensuring environmental safety, and maintaining agricultural productivity. 
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