

MEDICINAL PLANTS FOR TRADICIONAL USE IN THE CORCOVADO COMMUNITY, MARAJÓ MESOREGION

PLANTAS MEDICINAIS DE USO TRADICIONAL NA COMUNIDADE DE CORCOVADO, MESORREGIÃO DO MARAJÓ

PLANTAS MEDICINALES DE USO TRADICIONAL EN LA COMUNIDAD DE CORCOVADO, MESORREGIÓN DE MARAJÓ

https://doi.org/10.56238/sevened2025.036-016

Eduardo Antonio Abreu Pinheiro¹, Rayane Pereira Barreiros², Benedita da Costa Gonçalves³, Vitória Maigda Magno Gomes⁴, Carla Crislem Chaves de Araújo⁵, Joelma Câmara da Silva e Silva⁶, Elisa Monteiro Cordeiro⁷, Marcelo Almeida de Paulo⁸

ABSTRACT

Medicinal plants are of great importance for promoting people's health, especially for residents of rural communities such as Corcovado, located in the municipality of Breves. Marajó Mesoregion, Pará States. The study aimed to conduct na ethnobotanical survey of medicinal plants in the research site, as well as to determine their importance the health of local residents. The research was conducted through on-site visits to properties to collect socioeconomic and ethnobotanical data, and through guided tours to conduct semi-structured interviews with 49 residents. In total, 66 species from 40 botanical families were cited in the study. The most frequently cited plants were bloodroot, cow's foot, pariri, peppermint and quebra pedra. The leaves were the most frequently cited part for preparing teas to alleviate or cure various symptoms. The categories of circulatory system disorders and endocrine diseases presented the hightest rates according to the Informant Consensus Factor. In the Corcovado Community, it was evident that the use of medicinal plants plays a central role in health, strengthening territorial belonging and sociocultural and environmental preservation.

Keywords: Medicinal Plants. Health. Belonging to the Territory. Environmental Preservation. Corcovado Community. Marajó Mesoregion.

E-mail: rayane.pereira@ifpa.edu.br

E-mail: carladearaujo1710@gmail.com

¹ Dr. in Organic Chemistry. Instituto Federal do Pará. E-mail: eduardo.pinheiro@ifpa.edu.br.

² Specialization in Africanities and Afro-Brazilian Culture. Instituto Federal do Pará.

³ Undergraduate student in Technology in Environmental Management. Instituto Federal do Pará. E-mail: beneditacosta037@gmail.com

⁴ Undergraduate student in Technology in Environmental Management. Instituto Federal do Pará. E-mail: vitoriamagnogomes@gmail.com

⁵ Undergraduate student in Full Degree in Rural Education. Instituto Federal do Pará.

⁶ Undergraduate student in Full Degree in Rural Education. Instituto Federal do Pará. E-mail: joelmacamaradasilvaesilva@gmail.com

⁷ Undergraduate student in Full Degree in Rural Education. Instituto Federal do Pará. E-mail: janjamonteiro0972@gmail.com

⁸ Graduating in Technology in Environmental Management. Instituto Federal do Pará. E-mail: ma7744100@gmail.com

RESUMO

As plantas medicinais retratam aspecto de grande importância para a promoção da saúde das pessoas, especialmente para os moradores de comunidades rurais como a de Corcovado que se localiza no município de Breves, Messoregião do Marajó, Estado do Pará. A pesquisa objetivou realizar o levantamento etnobotânico das plantas medicinais existentes no lócus da pesquisa, bem como verificar a importância delas para a promoção de saúde dos moradores do local. A pesquisa foi realizada por meio de visita in loco às propriedades para o levantamento de dados socioeconômicos e etnobotânicos, por meio do método turnêguiada para a realização de entrevistas semiestruturadas com 49 moradores. Ao todo, 66 espécies de 40 famílias botânicas foram citadas no estudo. As plantas mais citadas foram for sangue, pata da vaca, pariri, hortelã pimenta e quebra pedra. A folha foi a parte mais citada para o preparo de chás para alívio ou cura de diversos sintomas. As categorias de transtornos do sistema circulatório e de doenças endócrinas apresentaram os maiores índices de acordo com o Fator de Consenso do Informante. Evidenciou-se na Comunidade de Corcovado que o uso de plantas medicinais desempenha um papel central na saúde, no fortalecimento de pertencimento ao território e na preservação sociocultural e ambiental.

Palavras-chave: Plantas Medicinais. Saúde. Pertencimento ao Território. Preservação Ambiental. Comunidade de Corcovado. Mesorregião do Marajó.

RESUMEN

Las plantas medicinales son de gran importancia para promover la salud de las personas, especialmente para los residentes de comunidades rurales como Corcovado, ubicado em la município de Breves, Mesorregión de Marajó, Estado do Pará. El estudio tuvo como objetivo realizar um relevamiento etnobotánico de plantas medicinales en el sitio de investigación, así como determinar su importancia para promover la salud de los residentes locales. La investigación se llevó a cabo mediante visitas in situ a propriedades para recopilar datos socioeconómicos y etnobotánicos, y mediante visitas guiadas para realizar entrevistas semiestructuradas con 49 residentes. En total, se citaron en el estudio 66 especies de 40 famílias botánicas. Las plantas citadas com mayor frecuencia fueron sanguinaria, pata da vaca, pariri, menta piperita y quebra pedra. Las hojas fueron la parte más citada para preparar tés para aliviar o curar diversos síntomas. Las categorías de trastornos del sistema circulatorio y enfermades endocrinas presentatron las tasas más altas según el Factor de Consenso del Informante. En la Comunidad de Corcovado se evidenció que el uso de plantas medicinales juega un papel central en la salud, el fortalecimiento de la pertenencia territorial y la preservación sociocultural y ambiental.

Palabras clave: Plantas Medicinales. Salud. Pertenencia Al Territorio. Preservación Ambiental. Comunidad Corcovado. Mesorregión de Marajó.

7

1 INTRODUCTION

Since time immemorial, medicinal plants have been used as a primary source of treatment and cure for a wide range of ailments. Even before the development of modern medicine, our ancestors relied on the vast knowledge of the medicinal properties of plants to relieve symptoms and promote health recovery. This ancestral knowledge, passed down from generation to generation, continues to be valued to this day, especially in societies where access to conventional medicine may be limited (Braga and Silva, 2021).

It is important to emphasize that in the face of constant progress in modern civilization, they have led to numerous cultural changes, thus losing part of the traditional perception regarding the active elements of medicinal plants, consequently generating forgetfulness about some beneficial effects and risks. After all, every plant contains active ingredients and toxins, and if ingested incorrectly can cause undesirable parallel damage. Therefore, despite the many benefits, it is essential to understand more and more about these herbs that are so impetuous in herbal treatments in human health (Silva *et al.*, 2023).

According to the above, the present study aimed to carry out a diagnosis of popular knowledge and the use of plants of medicinal species (their main forms of preparation) in the Community of Corcovado, located in the rural area of the municipality of Breves-Pará, in the Mesoregion of Marajó, and to reconcile traditional knowledge and scientific knowledge of the study of medicinal plants.

This article addresses topics such as the importance of medicinal plants, the biodiversity of medicinal plants in the Amazon, the interface between traditional and scientific knowledge about the use of medicinal plants, the description of the Corcovado Community, the methodological procedures addressed and the results obtained during the study. The study comes from the research project "Perception and knowledge about medicinal plants of the population of the urban area of the municipality of Breves, in the Marajó Archipelago, Pará.", fostered by Public Notice No. 01/2025 - Girls in Science. In addition, the importance of medicinal plants that were cataloged by the project team in the locus of the research and the phytotherapeutic use of some of these botanical species by the residents of this community will be described here.

2 THEORETICAL FRAMEWORK

2.1 IMPORTANCE OF THE BIODIVERSITY OF MEDICINAL PLANTS IN THE AMAZON

The therapeutic use of plants is an old practice, recognized and approved by several health policies in several countries, including Brazil (Nery *et al.*, 2021). Brazil has enormous cultural and ethnic diversity, resulting in a considerable accumulation of knowledge about medicinal plant management (Marconccine, 2022). In addition to the assimilation of indigenous knowledge, the contributions brought by African and European cultures played an important role in the emergence of a rich folk medicine in the country (Ferreira *et al.*, 2021).

In the Amazon region alone, it is estimated that 25 thousand species of plants are used to cure various conditions such as snuff, mambe, toé and other options that have indigenous origin (Villar, 2020). In addition, African peoples enslaved to Brazil incorporated their knowledge about plants into the local context, adapting to the Brazilian flora and exchanging experiences with indigenous peoples. This exchange brought plants such as rue, boldo, barbatimão, lemon balm, incense and rosemary, which are species widely used in teas, baths and compresses, serving both to treat physical ailments and for spiritual protection. This tradition is maintained by quilombola communities in the Amazon where the relationship with nature is deep and respectful and traditional medicine plays a central role in health promotion (Pinheiro, 2024).

The Amazon is a relevant granary for the cultivation of these inputs of the local flora, although there is still limited evidence about the chemical-pharmacological properties and natural products (Amazonas and Figueiredo, 2021). For example, Calvimontes *et al.* (2020) analyzed the experience of miners in Amazonian communities, who despite precarious work experiences and vulnerability accentuated by the pandemic, they were able to find alternative and cooperative solutions, including the use of medicinal plants to face the crisis. Therefore, studies such as these not only highlight the continued relevance of traditional practices, but also suggest pathways for a broader integration of these practices into contemporary health systems, promoting a holistic and culturally sensitive approach to public health (Régis *et al.*, 2025).

A survey carried out by a group of pharmacists in the Amazon found that the seven species most cited and used by the population of Pará are: boldo, mint, rue, lemon balm, copaiba, andiroba. According to this ethnopharmacological study, 16% of the population of Pará uses these medicinal plants to treat infections, 20% for inflammation in the digestive

7

system, and 12% for the treatment of flu symptoms and problems related to the respiratory system (Federal Council of Pharmacy, 2022).

The prospects for the future of research on medicinal plants in the Amazon are promising. The fusion of traditional knowledge with scientific research can result in innovative discoveries and the development of new drugs. However, to make the most of this potential, it is essential to prioritize the preservation of Amazonian biodiversity, ensuring the sustainable use of natural resources (Miranda *et al.*, 2025).

2.2 INTERFACE BETWEEN TRADITIONAL AND SCIENTIFIC KNOWLEDGE ABOUT THE USE OF MEDICINAL PLANTS

The world is currently witnessing a reformulation of the correction of life with natural and ecological values and today it is possible to perceive that they return in all spheres of scientific knowledge and practical life, in the determination of new precepts. Therefore, the use of plants for medicinal purposes has renewed and stimulated interest in the knowledge of the properties of medicines extracted by plants, including their morphology, chemical constituents, pharmacological properties, etc. (Soares *et al.*, 2023).

The use and conservation of biodiversity by traditional peoples contribute to the development of sustainable practices, seek ways to reduce the socio-environmental and food impacts of today, recognize the socio-cultural identity and ensure the permanence of these peoples in their territories (Batista *et al.*, 2020).

Traditional communities, sertanejo peoples, riverside dwellers, indigenous communities, quilombola peoples, among others, have made and continue to use medicinal plants since the most remote times, the improvement and use of these methods for the use of medicine is a great advance in the context of the health of the population, where it is important to understand the benefits that popular knowledge has brought to society to advance technically and scientifically (Cabral e Sousa *et al.*, 2021).

Phytotherapy is the therapy characterized by the use of medicinal plants in their different pharmaceutical forms, without the use of isolated active substances, still of plant origin (BRASIL, 2012). In Brazil, the National Policy on Integrative and Complementary Practices in the SUS, agreed upon by the Tripartite Interagency Commission and approved by the National Health Council (Ordinance GM No. 971, of May 3, 2006), proposes the inclusion of medicinal plants and phytotherapy as therapeutic options in the Unified Health System (SUS). Currently, in the SUS, there are 12 herbal medicines in the National List of

V

Essential Medicines (RENAME) that can be offered in the public network after agreement between state and municipal managers (STÊNICO *et al.*, 2021).

Living pharmacy is fundamental in the integration of traditional and scientific knowledge about medicinal plants and promotes sustainability by allowing the local cultivation and use of plants, benefiting communities with limited access such as in rural contexts and indigenous communities, where traditional knowledge about medicinal plants is deep and widely disseminated (Moraes *et al.*, 2020).

In addition to preserving biodiversity and traditional knowledge, the living pharmacy establishes the autonomy of health systems, reducing dependence on industrialized drugs, contributing to the validation and standardization of natural treatments, reinforcing the safe and rational use of herbal resources (Silva, 2024).

The Ministry of Health will invest R\$5.5 million in six projects for the implementation or structuring of live pharmacies in the Unified Health System (SUS). The action aims to ensure the access of users in the public health network to herbal medicines with quality, safety and effectiveness. In addition, the strategy provides for the promotion and recognition of popular and traditional practices for the use of medicinal plants and herbal medicines (BRASIL, 2024).

2.3 DESCRIPTION OF THE COMMUNITY OF CORCOVADO (LOCUS OF THE RESEARCH)

The research was developed in the Corcovado Community, which is located in the rural area of the municipality of Breves (southwest of the Marajó Mesoregion, latitude 01° 40' 56" south and longitude 50° 28' 49" north), on the banks of the Parauaú River, where access can be made in two ways: by land or river, and by land the time to reach the community varies from 35 to 60 minutes and the river trip takes 30 minutes (Authors, 2025).

The community carries with it an important historical and social legacy, being a milestone in the economic development of the region during the mid-twentieth century. During this period, the Community of Corcovado stood out for the installation of several rubber processing factories, which significantly boosted the local economy. Industrialization has attracted hundreds of families, reaching approximately 1,200 families, a number that contrasts with the current reality, where about 50 families reside. Even with the population decrease and the closure of industrial activities, the community preserves a rich cultural and traditional heritage, especially with regard to the use of medicinal plants as a form of health

care (Santos *et al.*, 2020). Currently, the Corcovado Community is home to 66 families, with approximately 400 people residing there (Authors, 2025).

The popular knowledge present in the Community of Corcovado (Figure 1) reflects a form of knowledge that goes beyond the healing aspect, as it integrates spiritual, cultural and ecological aspects. It is important to highlight that this practice is in line with the principles of education in agroecology, which defends the valorization of local knowledge, respect for cultural diversity and the construction of sustainable alternatives for rural development (Paula et al., 2022). In this context, the use of medicinal plants represents the importance of inclusive care, but also a relevant strategic factor of cultural resistance and the affirmation of peasant identity (Lima, 2025).

Figure 1

Aerial view of the Corcovado Community

Source: Reis, 2023.

3 METHODOLOGY

A qualitative and quantitative social research was carried out (RODRIGUES *et al.*, 2021), using simple descriptive statistics through the Microsoft Excel program. First, semi-structured interviews were conducted with 49 residents, aged 30 to 80 years, of the Corcovado Community. The interview questionnaires were based on standardized forms (Martin, 2004) and information on the interviewees' knowledge was provided after reading, consenting and signing the Informed Consent Form. Finally, the ethical guidelines of the International Society of Ethnobiology (ISE, 2006) were adopted in an adapted form. The survey was conducted from May to July 2025.

V

In these interviews with the residents of the Corcovado Community, information was obtained on the socioeconomic profile (gender, age, level of education and monthly income) and plants used for medicinal purposes, their uses, preparations and parts used, using the free listing technique (Mussi *et al.*, 2021). The interview script was based on a semi-structured questionnaire, containing objective and discursive questions. Visits were made to more than 15 properties.

For the ethnobotanical survey of the medicinal plant species of the Corcovado Community, they were identified through photoFigureic records, specialized literature, reference materials and consultation of the botanical database present in virtual herbaria in the Pl@ntNet Identify and the Reflora/CNPQ Program applications. Due to the unfavorable conditions of flowering and fruiting of the species mentioned in the topic Results and Discussions and the short period (study derived from a research project), it was not possible to perform exsiccates.

In order to achieve the objective of evaluating the perception of the use of medicinal plants by the residents of the Corcovado Community, the data from the interviews were tabulated. Among the analyses, the Informant Consensus Factor (FCI) was obtained according to the technique developed by Troter and Logan (1986), evaluating the level of fidelity (NF). This consensus is based on the agreement between the informants' answers for a main therapeutic indication (ind.). The formula NF = (Ip/Iu) x 100% was used, where Ip= number of informants who mentioned the main use of the species and Iu= number of informants who mentioned the species for any purpose, adapted by Beltreschi (2016).

The Informants' Consensus Factor (FCI) was calculated using the formula FCI = Nur-Nt/Nur-1, where Nur= sum of the uses recorded by each informant for a category and Nt= number of species indicated for each category. The FCI ranges from 0 to 1, with the maximum value being a local consensus among informants about medicinal plants for a specific category.

The diseases mentioned were classified into categories according to the International Statistical Classification of Diseases 11th Revision (ICD-11), The global standard for diagnostic health information, according to the WHO in 2022.

4 RESULTS AND DISCUSSIONS

Among the 49 interviewees, most were women (91.8%; 45 ind.) and approximately 59.2% (29 ind.) were married. The predominant age group was 65-69 years (22.4%; 11 ind.), followed by 60-64 years (18.4%; 9 ind.). Regarding the level of education, 42.8% (21 ind.) of the interviewees are illiterate and 24.5% (12 ind.) are people who have not completed elementary school, and only 4.1% (2 ind.) have completed higher education as shown in Table 1. This result is in agreement with data found in the literature, as the elderly are considered the wisest people to share traditional knowledge about the use of medicinal plants for the next generations (Vieira *et al.*, 2024).

Most of the interviewees (approximately 95.9%) are owners of the area where they live and, among the economic activities, retirement is the main source of income (26.5%; 13 ind.), followed by government aid such as Bolsa Família (16.3%; 9 ind.). The family income reported by the interviewees with the highest percentage was up to one minimum wage (71.4%; 35 ind.), followed by those who receive from 1 to 2 minimum wages (18.4%; 9 ind.) and, in a lower percentage, those with income from 3 to 5 minimum wages (10.2%; 5 ind.). Residents who have lived in the Corcovado Community for more than 10 years represent the majority of the interviewees (53.1%; 26 ind.), followed by those who have lived for more than 5 years (36.7%; 18 ind.) in the locus of the research, as can be seen in Table 1. This prolonged time of residence of the residents constitutes an essential element of traditional care, the strengthening of belonging, autonomy and the appreciation of ancestry, proposing a dialogue between popular knowledge and scientific knowledge (Pinheiro *et al.*, 2025).

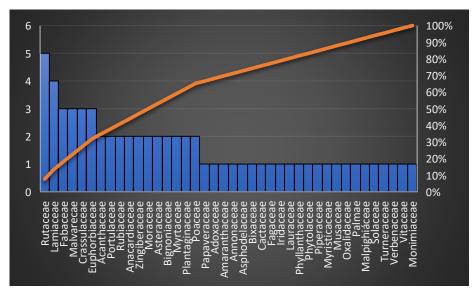
 Table 1

 Socioeconomic profile of the residents interviewed in the Corcovado Community

Category	Number of	
	residents	%
Female	45	91,8
Male	4	8,2
Single	13	26,5
Married	29	59,2
Stable Union	2	4,1
Widower	5	10,2
30-34 years old	4	8,2
35-39 years old	2	4,1
	Female Male Single Married Stable Union Widower 30-34 years old	residents Female 45 Male 4 Single 13 Married 29 Stable Union 2 Widower 5 30-34 years old 4

	40-44 years old	2	4,1
	45-49 years old	4	8,2
	50-54 years	6	12,2
	55-59 years	7	14,2
	60-64 years old	9	18,4
	65-69 years	11	22,4
	70 years or older	4	8,2
Education Degree	Illiterate	21	42,8
	Incomplete		
	Elementary	12	24,5
	School		
	Complete		
	Elementary	4	8,2
	School		
	Incomplete High	2	4,1
	School	2	4,1
	Complete High	5	10,2
	School	3	10,2
	Incomplete	3	6,1
	Higher Education	O	0,1
	Complete Higher	2	4,1
	Education	_	.,.
Household income	Up to 1 minimum	35	71,4
	wage		, .
	More than 1 to 2	9	18,4
	minimum wages	•	
	From 3 to 5	5	10,2
	minimum wages	· ·	10,2
Length of residence in	1 year ago	2	4,1
the community	More than 2	3	6,1
	years	<u> </u>	0 ,.
	More than 5	18	36,7
	years		
	More than 10	26	53,1
	years		33, .

Source: Authors, 2025.

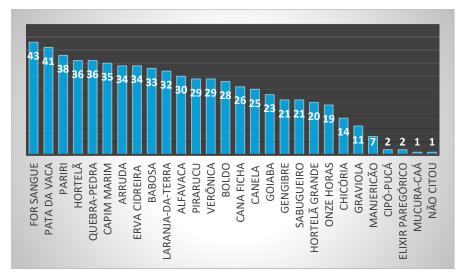


Regarding the question whether he considered the use of medicinal plants important, only one interviewee reported that he did not. She was also the one who commented that she did not use any species of medicinal plant.

The interviewees reported the presence of more than 80 species on their properties. However, the authors only photoFigureed 66 species (spp.) of medicinal plants, which are distributed in 40 botanical families as shown in Figure 1 and 57 genera as shown in Figure 1, for comparison in existing databases in the Pl@ntNet Identify and the Reflora/CNPQ Program applications. Many species reported by residents were not photoFigureed because access to some parts of the community could only be made through a boat, since a wooden tip was not safe. In addition, the interviewees mentioned that some species died and needed to be replanted. This reinforces that medicinal plants play a central role in promoting health and conserving biodiversity, highlighting the concern of residents of rural communities to ensure sociocultural and environmental preservation (Paiva *et al.*, 2025). The families with the highest number of species (spp.) were Rutaceae (5 spp.; 7.9%) and Lamiaceae (4 spp.; 6.3%) as can be seen in Figure 1. The species most used by the interviewees in the Corcovado Community are for sangue (*Justicia polygonoides Kunth*), cow's paw (*Bauhinia forficata Link*), pariri (*Arrabidaceae chica Verlot.*), peppermint (*Mentha x piperita L.*) and stone breaker (*Phyllanthus niruri L*) as shown in Figure 2.

Figure 1

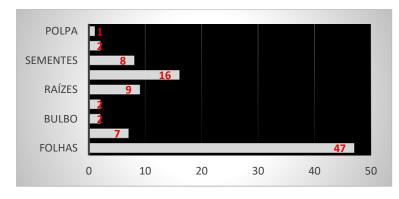
Classification of botanical families and quantity of species recorded by the project team at the locus of the research



Source: Authors, 2025.

Figure 2

Number of citations of medicinal plant species most used by the families of the interviewees from the Corcovado Community

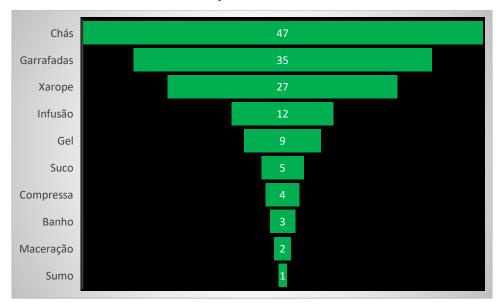


Source: Authors, 2025.

Regarding the parts most used in medicinal preparations, the leaf (47 citations) was the most cited, followed by the bark of the tree (16 citations) as can be seen in Figure 3. Some important factors for the leaves to be the parts used are easy access and prolonged availability throughout the year; in addition to its metabolite effects being more noticeable, unlike flowers and fruits (Falcão *et al.*, 2022). Another factor to highlight is that, even in large quantities, the use of leaves is not harmful to the plants, unlike what occurs when using the bark and root, which can compromise the vegetable (Carbolim *et al.*, 2024).

Figure 3

Number of citations of the most used parts of medicinal plants by the interviewees in the Corcovado Community


Source: Authors, 2025.

As for the most common method of preparation, tea was the most cited (47 citations), followed by garrafada (35 citations), syrup (27 citations) as can be seen in Figure 4 Teas are traditional preparations widely disseminated among people of different backgrounds and in different communities, constituting an ancient cultural practice (Mota-Santos *et al.*, 2021). In addition, the use of teas has been an alternative source for the vast majority of the population due to factors such as the high cost of industrialized medicines and, sometimes, restriction to a quality health system (Assis *et al.*, 2025).

Figure 4

Number of citations of the most used forms of preparation of medicinal plants by the interviewees in the Corcovado Community

Source: Authors, 2025.

The species of medicinal plants were indicated for the prevention and treatment of 66 symptoms and diseases, mentioned in the Category column in Table 2, which were classified into 13 categories of body systems, with circulatory system disorders and endocrine diseases, as the most relevant categories pointed out by the interviewees in the Community of Corcovado as shown in Table 2. Many studies in Brazil that use the Informant Consensus Factor (FCI) as a methodology, regardless of the region, present very varied values between the categories, however it is possible to identify a pattern in relation to Circulatory System Disorders, since in several studies they have cited the largest number of species for the treatment of diseases in this system, always appearing among the top three systems with the highest FCI (Ribeiro *et al.*, 2014; Saraiva, 2015; Vieira et al, 2022). Endocrine diseases,

such as diabetes, do not usually appear in the first places taking into account the FCI. However, several factors can be pointed out for the prevalence of this category among the interviewees, such as socioeconomic inequalities, a situation experienced by the residents of the Corcovado Community who see medicinal plants as alternative sources for improving health indicators. According to Hoth *et al.* (2025), the analysis of DATASUS data showed that regions with lower per capita income and lower levels of education concentrate a higher burden of diabetes. Studies show that the North and Northeast regions concentrate municipalities with low human development indexes (HDI) and, therefore, present challenges such as a shortage of health professionals, medicines, and adequate infrastructure for the prevention and treatment of endocrine diseases (Fernandes and Carneiro, 2023; Melo *et al.*, 2022).

Table 2Body System (CS), popular names of the species recorded, number of reported citations of diseases according to CS, forms of use and Informant Consensus Factor (FCI)

Category	Popular names	Number of	
	of plant	citations	FCI
	species	reported	
	Acerola,		
	alfavaca, garlic		
	vine, mulberry,		
	stingray,		
	coffee, cashew		
Circulatory system	tree, chanana,		
	two loves,	45 0	
disorders (stroke, hypertension,	guava tree,		
blood pressure	soursop,		0,52
control,	jambu,		0,02
thrombosis,	jackfruit,		
hemorrhoids)	mangueira,		
	mucura caá,		
	eleven o'clock,		
	elephant ear,		
	palm tree,		
	papirapoba,		
	cow's paw,		

	purple pine		
	nut, pirarucu		
	Acerola,		
	alfavaca,		
	arraia, coffee,		
	cashew tree,		
	fixed cane,		
Endocrine	cinnamon,		
diseases	pucá vine,		
(diabetes, high	copaiba,		
cholesterol, blood	guava,	35	0,44
	soursop,		
glucose control,	jambu,		
weight loss)	jackfruit,		
	mango, noni,		
	palmiteiro,		
	pariri, pata da		
	vaca, allspice,		
	quebra pedra,		
Undefined	Cotton, grown	48	0,29
symptoms	love, aranto,		
(headache, fever,	stingray, rue,		
antispamodic, anti-	aloe, boldo,		
inflammatory,	cocoa,		
antimicrobial,	cashew,		
analgesic and	camapu, fixed		
antioxidant	cane,		
activities, allergy)	cinnamon,		
	lemongrass,		
	paregoric		
	elixir, ginger,		
	yellow ginger,		
	large mint,		
	peppermint,		
	lime, cayano		
	lemon,		
	marupazinho,		
	nutmeg,		
	papirapoba,		

	cow's paw,		
	penicillin,		
	allspice, fence		
	pine nut,		
	pirarucu,		
	quebra pedra,		
	rinchão and		
	saratudo		
	Aranto, aloe,		
	fixed cane,		
	lemongrass,		
	copaiba dois		
	amores, for		
	blood,		
Skin diseases,	soursop,		
lesions, poisoning	jackfruit, lime,		
and other external	Galician		
consequences	lemon,		
(acne, itching,	marupazinho,		
erysipelas,	nutmeg,	34	0,27
ringworm, healing,	eleven o'clock,		
moisturizing,	palmiteiro,		
aging, wounds,	pariri, allspice,		
burns and	purple pine		
antiseptic)	nut, pirarucu,		
	rinchão,		
	elderberry,		
	saratudo,		
	annatto,		
	broom,		
	veronica		
Other indications	Grown love,		
	mulberry,		
(vomiting, hair	stingray, aloe,		
strengthening,	banana, boldo,	40	0.05
toothache, back	cashew,	48	0,25
pain, anemia, oral	cinnamon,		
health, canker	camapu, holy		
sores, improved	grass, cipó		

momory and	pucá, for		
memory, and	•		
rheumatism)	blood, ginger,		
	yellow ginger,		
	guava,		
	soursop, large		
	mint,		
	peppermint,		
	jambu,		
	jackfruit, baby		
	tear, earth		
	orange, lime,		
	cayano lemon,		
	marupazinho,		
	mucura caá,		
	noni, ora pro		
	nobis, pariri		
	pata da vaca,		
	allspice, fence		
	pine nut,		
	pomelo,		
	saratudo,		
	broom,		
	veronica		
	Alfavaca,		
	garlic vine,		
Disorders of the	chanana,		
respiratory system	copaiba,		
(strengthening	yellow ginger,		
immunity,	large mint,		
•	peppermint,		
coughing,	jambu, orange,	00	0.04
bronchodilator and	lime, cayan	26	0,24
expectorant actions, asthma,	lemon,		
	Galician		
flu, colds, throat	lemon, mango,		
inflammation and	nutmeg,		
tonsillitis)	papirapoba,		
	pariri, pomelo,		
	elderberry,		
	•••,		

	annatto,		
	veronica		
Gastrointestinal system disorders	Grown love, boldo,		
	lemongrass, paregoric elixir, yellow		
	ginger, large mint,		
(liver, ulcer, stomach pain, gastritis, and	peppermint, mango,	20	0,23
hepatitis)	nutmeg, eleven o'clock,		
	pariri, rinchão, saratudo, broom,		
	veronica		
Nervous system disorders (Alzheimer's disease, tranquilizer, sedative action, anxiety)	Boldo, lemongrass, cupuaçu, lemon balm, peppermint, large mint, baby tear and cork oak	10	0,22
Disorders of the genitourinary system (urinary and vaginal infections, menstrual cramps, diuretic action and uterus)	Alfavaca, cotton, garlic vine, boldo, cinnamon, chanana, ginger, noni, pariri, allspice, purple pine nut, quebra pedra, broom	17	0,18
Infectious diseases (diarrhoea, malaria)	Saratudo, banana tree, cashew tree, guava tree,	7	0

	marupazinho,		
	amor grown-up		
	and pariri		
Neoplasms	Aloe, banana,		
(antitumor action,		4	0
leukemia)	noni and pariri		
Diseases of the			
musculoskeletal	Banana tree		
system (cramp	and fence pine	2	0
and treatment of	nut		
bone problems)			
Diseases of the	Pariri	1	0
eye (Conjunctivitis)	ганн	ı	U
	Pariri	1	0

Source: Authors, 2025.

Regarding the level of fidelity, the cow's leg (92.7%) stands out for the treatment of cardiovascular diseases and the blood leg (90.6%) for the treatment of anemia. Pariri (89.5%) was indicated as essential for anti-inflammatory activity, while peppermint obtained 83.3% for the same phytotherapeutic property. It is worth mentioning the importance of rue (88.2%) because of its analgesic activity. Veronica (86.2%) and cinnamon (84%) were pointed out as the main botanical species that help in the treatment of diabetes according to the NF. Finally, breaking stone was the main highlight in controlling blood glucose and reducing cholesterol (94.4%) and for the treatment of kidney problems (77.7%). In addition, lemongrass (74.3%) is an important medicinal plant to treat wounds.

5 CONCLUSION

The traditional knowledge of the residents of the Corcovado Community proved to be relevant, where the locus of the research presents a variety of medicinal plants where 66 botanical species for phytotherapeutic purposes were identified through photoFigureic records and comparison of these photos in the database present in virtual herbaria in the applications Pl@ntNet Identify and the Reflora/CNPQ Program. Therefore, it is important that new research be carried out so that this important knowledge can be safeguarded, both for the use and production of drugs from these ethnobotanical species.

Regarding the methodological aspect, the lack of logistical support made it difficult to identify other species of medicinal plants and even the formation of exsicata that would be of fundamental importance to represent the flora of the Corcovado Community, as well as to

7

enable the evaluation of environmental impacts and subsidize agroecological management plans.

This research showed that the residents of the Corcovado Community have difficulties in accessing health services, which reinforce the dependence of the local population on natural therapeutic practices, and the interviewees use medicinal plants for the treatment of various symptoms and diseases, mainly related to disorders of the circulatory system and endocrine diseases. In addition to medicinal plants playing a central role in promoting health in the locus of research, the herbal practices carried out by the residents demonstrate respect for the conservation of the environment and are essential for strengthening belonging to the territory, maintaining ancestral knowledge and preserving sociocultural and environmental traditions in the Marajó Mesoregion. Therefore, it is recommended to carry out public policy actions that promote the sustainable management of natural resources and integrate health, environment and culture.

Phytotherapy and the ethnobotanical survey are subjects that must be constantly explored and discussed in favor of the strategic and significant planning of health agencies to guarantee the health and well-being of the population, especially community residents.

ACKNOWLEDGMENTS

To the Dean of Research, Graduate Studies and Innovation (PROPPG) of IFPA for the promotion of research through Public Notice No. 01/2025 - Girls in Science.

REFERENCES

- Amazonas, L. F., & Figueiredo, E. F. G. (2021). Uma revisão sobre o uso de plantas medicinais como tratamento da Covid-19 e a importância do profissional farmacêutico no estado do Amazonas. Research, Society and Development, 10(15), e135101523188. https://doi.org/10.33448/rsd-v10i15.23188
- Assis, L. L. R., Rodrigues, K. A., & Romualdo, J. B. (2025). Uso de plantas medicinais e aromáticas: Saberes e práticas predominantes em Conselheiro Lafaiete e Queluzito, Minas Gerais, Brasil. Journal of Environmental Analysis and Progress, 10(2), 60–70. https://doi.org/10.24221/jeap.10.2.2025.0080.60-70
- Batista, K. M., & Milioli, G., & Citadini-Zanette, V. (2020). Saberes tradicionais de povos indígenas como referência de uso e conservação da biodiversidade: Considerações teóricas sobre o povo Mbya Guarani. Ethnoscientia, 5(1), 1–12. https://doi.org/10.18542/ethnoscientia.v5i1.8375

- Beltreschi, L. (2016). Conhecimento botânico tradicional sobre plantas medicinais no Quilombo Ipiranga, município de Conde-PB [Dissertação de mestrado, Universidade Federal da Paraíba]. Repositório Institucional da UFPB. https://repositorio.ufpb.br/jspui/bitstream/tede/9160/2/arquivototal.pdf
- Braga, J. C. B., & Silva, L. R. (2021). Consumo de plantas medicinais no Brasil: Perfil de consumidores e sua relação com a pandemia de Covid-19. Brazilian Journal of Health Review, 4(2), 3831–3839. https://doi.org/10.34119/bjhrv4n2-013
- Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde, Departamento de Atenção Básica. (2012). Cadernos de atenção primária: Práticas integrativas e complementares. https://bvsms.saude.gov.br/bvs/publicacoes/praticas_integrativas_complementares_pla ntas_medicinais_cab31.pdf
- Brasil. Ministério da Saúde. Secretaria da Ciência, Tecnologia e Insumos Estratégicos. (2024, May). Ministério da Saúde vai destinar R\$5,5 milhões em projetos de implantação ou estruturação de Farmácias Vivas. https://www.gov.br/saude/pt-br/assuntos/noticias/2024/maio/ministerio-da-saude-vai-destinar-r-5-5-milhoes-em-projetos-de-implantacao-ou-estruturacao-de-farmacias-vivas
- Cabral e Sousa, L. C., Santos, G. D., Mâcedo, J. S., & Santana, L. A. (2021). Plantas medicinais, condimentos e o saber popular. Revista Saúde e Meio Ambiente, 13(1), 17–24. https://doi.org/10.24302/sma.v13i1.3562
- Calvimontes, J., Massaro, L., Araujo, C. H. X., Moraes, R. R., Mello, J., Ferreira, L. C., & Theije, M. (2020). Small-scale gold mining and the Covid-19 pandemic: Conflict and cooperation in the Brazilian Amazon. The Extractive Industries and Society, 7(4), 1347–1350. https://doi.org/10.1016/j.exis.2020.09.013
- Carbolim, R. L., Silva, V. C. P., Arruda, R., Cavalheiro, L., & Battirola, L. D. (2024). Etnoconhecimento associado ao uso de plantas medicinais por comunidades rurais em Peixoto de Azevedo, Mato Grosso. Revista da Biologia, 24(1), 15–30. https://doi.org/10.7594/revbio.24.01.02
- Conselho Federal de Farmácia. (2022, February 7). Farmacêuticos estudam as plantas medicinais mais utilizadas no Pará. https://site.cff.org.br/noticia/noticias-do-cff/07/02/2022/farmaceuticos-estudam-as-plantas-medicinais-mais-utilizadas-no-para
- Falcão, J. G., Marinho, L. C., & Zanandrea, I. (2022). Uso medicinal de plantas do povoado Muquila, Arari, Maranhão Um estudo etnobotânico. Ethnoscientia, 7(1), 68–87. https://doi.org/10.18542/ethnoscientia.v7i1.11725
- Fernandes, C. G. C., & Carneiro, J. J. B. (2023). Risco de déficit cognitivo em pessoas com diabetes mellitus em Marabá-PA [Trabalho de Conclusão de Curso, Faculdade de Ciências Médicas do Pará]. https://cdn.prod.website-files.com/65e0e3706cb09629489ee9a7/66364cda1034d49e22ddce31_TCC2%20-%20DEFESA...OK.pdf
- Ferreira, M. V., Lebuin, L. P., & Santos, J. S. (2021). Plantas medicinais de uso tradicional na região sul paraense: Estudo etnobotânico. Research, Society and Development, 10(12), e167101220513. https://doi.org/10.33448/rsd-v10i12.20513
- Hoth, N. A., Silva, P. H. O., Gomes, L. B. R., Martins, M. C. B., Vasconcelos, U. S., Soares, L. A., Silva, E. W. B., Paula Júnior, R. A. O., & Werneque, F. H. L. (2025). Impacto das

- desigualdades socioeconômicas na prevalência de diabetes mellitus tipo 2 e no acesso ao tratamento no Brasil: Um estudo ecológico com dados do DATASUS. Brazilian Journal of Implantology and Health Sciences, 7(3), 412–426. https://doi.org/10.36557/2674-8169.2025v7n3p412-426
- International Society of Ethnobotany. (2006). Código de ética da ISE. https://www.ethnobiology.net/wp-content/uploads/ISECodeofEthics Portuguese.pdf
- Lima, B. C. (2025). Análise do conhecimento etnobotânico e do uso de plantas medicinais por comunidades quilombolas. Revista FT, 29(142). [URL não fornecida para este artigo]
- Marconccine, M. (2022, November 4). UEMASUL desenvolve projeto sobre cultivo e uso de plantas medicinais em Estreito. UEMASUL Sala de Imprensa. https://www.uemasul.edu.br/uemasul-desenvolve-projeto-sobre-cultivo-e-uso-de-plantas-medicinais/
- Martin, G. J. (2004). Ethnobotany: A methods manual. Routledge. https://www.amazon.com/Ethnobotany-Methods-Manual-Conservation-International/dp/1844070840
- Melo, S. P. S. C., Barreto, M. N. S. C., Souza, N. P., Lira, P. I. C., & Cesse, E. A. P. (2022). Determinantes socioeconômicos do diabetes mellitus em um contexto de desigualdades no nordeste brasileiro. Research, Society and Development, 11(6), e14111628662. https://doi.org/10.33448/rsd-v11i6.28662
- Miranda, A. R. F., Lima, R. A., & Lima, J. P. S. (2025). Plantas medicinais encontradas na Amazônia Brasileira com potencial antimicrobiano frente a cepas bacterianas Gramnegativas: Uma revisão sistemática. Observatorio de la Economía Latinoamericana, 23(6), 1–14. https://doi.org/10.55905/oelv23n6-008
- Moraes, F. C., Jesus, P. G., Chechetto, F., & Machado, V. F. S. (2020). Plantas medicinais e fitoterapia no SUS em Itapeva/SP: Integrando saberes e conhecimentos para o cuidado em saúde. Revista Fitos, 14(3), 333–340. https://doi.org/10.32712/2446-4775.2019.898
- Mota-Santos, C. M., Azevêdo, A. P., & Lima-Souza, E. (2021). A mulher em tripla jornada: Discussão sobre a divisão de tarefas em relação ao companheiro. Revista Gestão e Conexões, 10(2), 103–124. https://doi.org/10.47450/rgc.v10i2.1043
- Mussi, R. F. F., Flores, F. F., & Almeida, C. B. (2021). Pressupostos para a elaboração de relato de experiência como conhecimento científico. Revista Práxis Educacional, 17(48), 60–77. https://doi.org/10.22481/praxisedu.v17i48.8369
- Nery, D. R., Batista, L. B. B., & Silva, J. M. S. (2021). A fitoterapia e o enfermeiro no âmbito da atenção primária à saúde. Brazilian Journal of Health Review, 4(5), 18718–18733. https://doi.org/10.34119/bjhrv4n5-013
- Organização Mundial da Saúde. (2022). International statistical classification of diseases and related health problems (ICD-11): The global standard for diagnostic health information. https://icdcdn.who.int/icd11referenceguide/en/html/index.html#tabular-list-special-tabulation-lists-qualifiers-and-modifiers
- Paiva, R. S., Costa, A. C. F., & Amaral, T. S. (2025). Saberes tradicionais: A importância do conhecimento tradicional sobre plantas medicinais em comunidades rurais. Open Journal Systems, 7(3), 144–153. [URL não fornecida para este artigo]

- Paula, N. F., Bezerra, I., & Paula, N. M. (2022). Saúde coletiva e agroecologia: Necessária conexões para materializar sistemas alimentares sustentáveis e saudáveis. Revista Ensaio, 46(2), 262–276. https://doi.org/10.17921/1415-6938.2022v24n2p262-276
- Pinheiro, A. L. (2024, November 20). Raízes de cura: Plantas medicinais na cultura negra e quilombola no Brasil. Fundação Jardim Botânico de Poços de Caldas. https://jardimbotanico.pocosdecaldas.mg.gov.br/noticias/historia/2024/11/20/raizes-de-cura%3A-plantas-medicinais-na-cultura-negra-e-quilombola-no-brasil-
- Pinheiro, P. N., Amador, A. O., Santos, A. B. H., Castro, A. F. B., Sandim, D. B., Martins Filho, A. J., & Lima, K. V. B. (2025). Uso de plantas medicinais e educação em saúde em comunidade remanescente de quilombo do Estado do Pará. Revista Delos, 18(69), 1–19. [URL não fornecida para este artigo]
- Régis, D. G. M., Farias, R. S., Carvalho, A. R. M., Rodrigues, L. L. A. R., Rodrigues, M. F. B., Carneiro Junior, H. A., Nakashima, F., Fraulob-Aquino, J. C., Silva, P. N. C., Moraga, L. M. V. M., Villar, L. M., Brasil, J. S. F., Souza, I. L. L., Lima, M. S. P., & Lima, G. M. (2025). Uso tradicional e contemporâneo de plantas medicinais na Região Amazônica durante a pandemia da Covid-19: Revisão de literatura. Revista Foco: Interdisciplinary Studies, 18(4), 1–18. https://doi.org/10.54749/revistafoco.v18i4.1132
- Reis, R. (2025). Passeio em Corcovado/Breves Voo de drone FIMI X8 Mini 4K [Vídeo]. YouTube. https://www.youtube.com/watch?v=c4j4eYQOY5Y
- Ribeiro, D. A., Macêdo, D. G., Oliveira, L. G. S., Saraiva, M. E., Oliveira, S. F., Souza, M. M. A., & Menezes, I. R. A. (2014). Potencial terapêutico e uso de plantas medicinais em uma área da Caatinga no estado do Ceará, nordeste do Brasil. Revista Brasileira de Plantas Medicinais, 16(4), 912–930. https://doi.org/10.1590/1983-084X/14_012
- Rodrigues, T. D. F., Oliveira, G. S., & Santos, J. A. (2021). As pesquisas qualitativas e quantitativas na educação. Revista Prisma, 2(1), 154–174. [URL não fornecida para este artigo]
- Santos, D. B., Santos, Y. R. D., Marcelino, D. S., Andrade, V. M., Souza, M. G. C., Melo, R. D., Furtado, M. A. A., & Leal, M. C. (2020). Aspectos históricos da etnobiologia da Comunidade de Corcovado no município de Breves-Pará. In Encontro de Ciências e Suas Tecnologias no Marajó e I Workshop de Ensino, Pesquisa e Extensão no Marajó. Even3. https://www.even3.com.br/anais/eventosfacin/126694-aspectos-historicos-da-etnobiologia-da-comunidade-de-corcovado-no-municipio-de-breves-pa/
- Saraiva, M. E. (2015). Estrutura e uso medicinal da vegetação em um Cerradão, Pernambuco, Nordeste do Brasil [Dissertação de mestrado, Universidade Regional do Cariri]. Repositório da URCA. https://www.urca.br/ppgdr/wp-content/uploads/sites/38/2023/06/Dissertacao-Manuele-Eufrasio-Saraiva.pdf
- Silva, A. C. (2024). Etnofarmacologia na Amazônia: Um estudo de caso nas Comunidades São Francisco e São José sobre o uso de plantas medicinais no município de Careiro da Várzea Amazonas [Dissertação de mestrado, Universidade Federal do Amazonas]. Repositório TED. https://tede.ufam.edu.br/bitstream/tede/10182/2/DISS AlexSilva PPGCASA
- Silva, E. B., Gama, A. S. M., & Secoli, S. R. (2023). Plantas medicinais durante a pandemia da Covid-19 na região Amazônica: Estudo populacional. Brazilian Journal of Health Review, 6(6), 29728–29746. https://doi.org/10.34119/bjhrv6n6-252

- Soares, A. D. S., Silva Júnior, A. M., & Araújo, L. A. (2023). Os saberes populares sobre plantas medicinais em uma comunidade quilombola de Salvaterra-PA frente ao uso de medicamentos derivados da medicina científica. Revista Multidisciplinar de Educação e Meio Ambiente, 4(2), 1–12. https://doi.org/10.51189/rema/3832
- Stênico, T., Gaspar, T., & Reis, T. (2021, August 10). ImPLANTANDO a fitoterapia no SUS. Universidade Federal de Alfenas, Farmácia Universitária. https://www.unifal-mg.edu.br/faruni/implantando-a-fitoterapia-no-su/
- Trotter, R., & Logan, M. (1986). Informant consensus: A new approach for identifying potentially effective medicinal plants. In N. L. Etkin (Ed.), Indigenous medicine and diet: Biobehavioral approaches (pp. 91–112). Routledge. https://www.amazon.com.br/Plants-Indigenous-Medicine-Diet-Biobehavioral/dp/0913178020
- Vieira, A. S., Girondi, J. B. R., Amante, L. N., Sebold, L. F., Soldera, D., Ferreira, M. E. A., Silva, B. H., & Rosário, C. (2024). Conhecimento popular dos idosos sobre o uso de plantas medicinais. Enfermagem em Foco, 15, e-202476. https://doi.org/10.21675/2357-707X.2024.v15.e-202476
- Vieira, B. B. (2022). Conhecimento etnobotânico das comunidades quilombolas do Sudeste do Brasil [Dissertação de mestrado, Universidade do Estado do Rio de Janeiro]. Repositório BDTD UERJ. https://www.bdtd.uerj.br:8443/bitstream/1/23401/2/Disserta%C3%A7%C3%A3o%20-%20Bruna%20Benazi%20Vieira%20-%202022%20-%20Completa.pdf
- Villar, R. (2020, April 9). Medicina indígena: Conheça a cura que vem da floresta e ajude. Greenpeace. https://www.greenpeace.org/brasil/blog/saude-que-vem-da-floresta-o-conhecimento-dos-povos-indigenas/