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ABSTRACT

Accurate forecasting of active (P) and reactive (Q) power in electrical networks is fundamental
to improving operational reliability and planning in modern power systems. This article
proposes a forecasting model based on Long Short-Term Memory (LSTM) neural networks
to estimate load demand in an IEEE 30-bus system. The model considers the active and
reactive power supplied by the generators as input variables, while the power components of
the loads are used as target variables for prediction. To improve performance, a Genetic
Algorithm (GA) was used to optimize hyperparameters, which reduced the Mean Absolute
Error (MAE) and increased the accuracy of the predictions. The results demonstrate that the
proposed approach provides stable predictions of load behavior, highlighting its potential for
application in smart grids and microgrid management systems.
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RESUMO

A previsao precisa das poténcias ativas (P) e reativas (Q) em redes elétricas € fundamental
para aprimorar a confiabilidade operacional e o planejamento nos sistemas de poténcia
modernos. Este artigo propdée um modelo de previsdo baseado em redes neurais do tipo
Long Short-Term Memory (LSTM) para estimar a demanda de carga em um sistema IEEE
de 30 barras. O modelo considera como variaveis de entrada as poténcias ativas e reativas
fornecidas pelos geradores, enquanto os componentes de poténcia das cargas sao utilizados
como variaveis-alvo de previsdao. Para aprimorar o desempenho, foi empregado um
Algoritmo Genético (GA) na otimizac&o de hiperparametros, o que reduziu o Erro Absoluto
Médio (MAE) e aumentou a precisdao das previsdes. Os resultados demonstram que a
abordagem proposta fornece previsbes estaveis do comportamento das cargas,
evidenciando seu potencial de aplicagcao em smart grids e em sistemas de gerenciamento
de microrredes.

Palavras-chave: Previsdo de Fluxo de Poténcia. LSTM. Algoritmo Genético. Poténcia Ativa.
Poténcia Reativa. Smart Grids.

RESUMEN

La prediccion precisa de la potencia activa (P) y reactiva (Q) en las redes eléctricas es
fundamental para mejorar la confiabilidad operativa y la planificaciéon en los sistemas de
potencia modernos. Este articulo propone un modelo de prediccion basado en redes
neuronales LSTM (Long Short-Term Memory) para estimar la demanda de carga en un
sistema |IEEE de 30 barras. EI modelo considera la potencia activa y reactiva suministrada
por los generadores como variables de entrada, mientras que los componentes de potencia
de las cargas se utilizan como variables objetivo para la prediccion. Para mejorar el
rendimiento, se empled un algoritmo genético (AG) en la optimizacion de hiperparametros,
lo que redujo el error absoluto medio (MAE) y aumenté la precision de las predicciones. Los
resultados demuestran que el enfoque propuesto proporciona predicciones estables del
comportamiento de la carga, lo que destaca su potencial aplicacion en redes inteligentes y
sistemas de gestion de microrredes.

Palabras clave: Prediccion de Flujo de Potencia. LSTM. Algoritmo Genético. Potencia
Activa. Potencia Reactiva. Redes Inteligentes.
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1 INTRODUCTION

The increasing complexity of modern electrical systems, driven by increased demand
and the integration of renewable energy sources, has intensified the need for the use of
advanced computational tools for load forecasting and system analysis. Accurate estimation
of active (P) and reactive (Q) power is essential to ensure reliable operation, system stability,
and efficiency in energy planning.

Traditional forecasting approaches, based on statistical or linear methods, have
limitations in dealing with the highly nonlinear and dynamic nature of power systems. In this
context, Recurrent Neural Networks (RNNs), especially Long Short-Term Memory (LSTM)
architectures, have stood out as effective alternatives due to their ability to capture long-term
temporal dependencies in historical data.

In this work, it is proposed the use of an LSTM network to predict the active and
reactive components of a load selected in the IEEE 30-bar test system, considering as input
variables the active and reactive powers provided by the generators. To further improve the
performance of the model, a Genetic Algorithm (GA) was used to optimize the
hyperparameters of the LSTM, enabling more consistent results with lower values of Mean
Absolute Error (MAE). Figure 1 presents the schematic representation of the IEEE 30-
member system used as an experimental reference. This test system is widely adopted in
the literature as a reference for the evaluation of forecasting and optimization methodologies

in electric power grids.

Figure 1

Schematic representation of the IEEE system of 30

Source: Researchgate.
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Figure 2 illustrates the general architecture of the proposed LSTM network,
highlighting the temporal sequence of the inputs (active and reactive powers of the

generators) and the outputs corresponding to the predictions of the active (P) and reactive
(Q) powers of the selected load.

Figure 2
Diagram of the LSTM architecture
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Finally, Figure 3 presents the flow of the optimization process conducted by the
Genetic Algorithm. The GA acts on the hyperparameters of the LSTM (number of neurons,

learning rate, number of layers, among others), evaluating performance based on the lowest

MAE obtained during validation.
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Figure 3

Optimization process flow conducted by the Genetic Algorithm
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In this scenario, the present article proposes the development of an algorithm based
on recurrent neural networks (RNN) with LSTM units for the prediction of the behavior of
loads in the IEEE 30-bar system, using historical data of power injections in the busbars.
LSTM-based RNNs stand out for their ability to capture complex temporal patterns in
sequential data, increasing the accuracy of predictions even under highly dynamic operating
conditions. Previous work has shown that accurate load forecasts directly impact the
efficiency of the operation of electrical systems, especially when integrated into distributed
generation structures, allowing the optimization of energy costs and the increase of the
penetration of renewable sources in the grid [3].

To understand the state of the art and contextualize the technical challenges involved,
a review of previous studies on time series forecasting in electrical systems and their impacts
on operational planning was carried out. In our analysis, different prediction scenarios were
tested using real power flow data combined with machine learning approaches. The learning

capacity of LSTM proved to be highly effective in capturing temporal dependencies, showing
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promising results even when using a reduced set of input variables, such as the active and
reactive powers of the generators, to predict the active and reactive demand of individual
loads. The forecasts were updated every 10 moments of time, simulating a realistic
operational horizon.

In the context of industrial and commercial applications, accurate load forecasting not
only optimizes the operation of distributed resources, but also contributes to the stability of
the power grid in regions with high penetration of renewable sources. Studies such as [4]
highlight the potential of Artificial Neural Networks in predicting losses in distribution
networks. Similarly, load forecasting with LSTM can act as a central element in reducing
technical losses in distribution systems when integrated with advanced load management
and energy storage strategies. This work advances over existing models by introducing
innovative approaches to deal with the variability and complexity of load data. For this, a
robust data set was built, contemplating various operating conditions of the IEEE 30-bar
system. The data set used in this work was composed of the operating conditions of its
generators and the 21 connected loads. Specifically, the input variables of the model
corresponded to the active and reactive powers provided by the generators, while the output
variables could, in principle, be the active and reactive powers of each of the 21 loads.
However, for the experiments conducted in this study, only load 2 was selected as the
prediction target. This choice aimed to reduce the initial complexity of the problem, allowing
the methodology to be validated in a controlled scenario. Thus, even though the complete
database includes all system loads, the forecast model was trained and evaluated
considering exclusively the active and reactive demand of load 2. The data were pre-

processed and normalized for training and validation of the prediction model.
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Another novelty presented in this work was the use of a Genetic Algorithm (GA) to
optimize the hyperparameters of the LSTM network, increasing the convergence speed and
reducing the mean prediction error.

In conclusion, this study represents a significant contribution to the development of
predictive techniques applied to the operation of electrical systems, with direct implications
for the electricity sector and for sustainable energy planning. Future research may investigate
the inclusion of additional operational variables, as well as the impact of extreme events and

contingencies, with the aim of further improving the proposed predictive models.

2 MATERIAL AND METHOD
2.1 THEORETICAL FOUNDATION
211 Rnn

Recurrent Neural Networks (RNNs) are a class of artificial neural networks specifically
designed to handle sequential data. Unlike traditional feedforward networks , RNNs
incorporate feedback loops that allow information from previous instants to influence the
current output. This characteristic makes them particularly suitable for forecasting tasks, in
which temporal dependencies and correlations play a key role [5].

However, traditional RNNs often face limitations, such as vanishing and exploding
gradients when trained on long sequences. These problems reduce the grid's ability to
capture long-term dependencies, which are essential for accurate forecasting in electrical

systems.

Figure 4
Recurrent Neural Networks (RNN)
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Source: The author.
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Each cell in the hidden layer corresponds to a Long Short-Term Memory (LSTM) unit,
illustrated in Figure 4. This is a variation of recurrent neural networks designed to handle
long-term dependencies on data sequences. Its main objective is to avoid problems such as
the disappearance or explosion of gradients, common in traditional RNNs. To do this, LSTM
uses a structured mechanism of gates that control the flow of information over time, allowing

the network to decide what information to keep, discard, or update.

Figure 5
Long Short Term Memory (LSTM)
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In general, the LSTM cell maintains two main states: the cell state (Ct) and the hidden
state (ht). The state of the cell is responsible for storing information over time, while the hidden
state serves as the output at each instant. These states are dynamically updated through

three main ports: oblivion port, inlet port, and outbound port.

2.1.1.1.1 Door of Oblivion (f):

\V4

Determines which previous state information (Ct-1) should be discarded. To do this, a

sigmoid function is applied, which generates values between 0 (discard) and 1 (keep). These

values are calculated from the combination of the previous hidden state (ht-1) and the current

input (xt).

fe = U(Wf * [he_q, x¢] + bf)
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2.1.1.1.2 Gateway (i) and Candidate Information (C):

Defines what new information will be added to the cell state. First, a sigmoid function
calculates the update coefficients. Next, candidate information (Ct) is generated through the
hyperbolic tangent function (tanh), which produces values between -1 and 1. These two steps
ensure that only relevant information is incorporated.
ir = o(W; x [he_1, xc] + by) (2)

Et = tanh(W, * [he_1, x¢] + b;) (3)

2.1.1.1.3 Cell State Update (Ct):
The current state is updated by combining the previous state with the new candidate
information. The oblivion port regulates how much of the previous state will be retained, while

the gateway defines the proportion of candidate information that will be incorporated.

Ce=fi OCor+i OC) (4)

Here, (O represents element-by-element multiplication, ensuring a dynamic

adjustment of the flow of information.

2.1.1.1.4 Exit Port (0):

Defines which current state information (Ct) will be used to generate the hidden state
(ht). The combination of the previous hidden state and the current input goes through a
sigmoid function, which controls the fraction released. Then, the cell state is activated with

the tanh function and multiplied by the output port values:

0 = 0(Wy * [he_q, x¢] + by) (9)

2.1.1.1.5 Calculation of the Hidden State (ht):
Finally, the hidden state is calculated as the element-to-element product between the
output of the output port (ot) and the activated version of the cell state (tanh(Ct)).

h: = o © tanh(C,) (6)
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2.1.1.2 HeatMap

HeatMap is a widely used data visualization tool to represent the values of a matrix or
table through color variations. This technique makes it easier to identify patterns, trends, or
correlations between variables in complex data sets. In the context of time series and
machine learning, HeatMaps are often employed to explore relationships between different
variables or to analyze the behavior of data over time.

The operation of a HeatMap is based on assigning colors to numerical values, usually
following a continuous scale, such as gradients ranging from blue (for low values) to red (for
high values). Each cell of the map represents the intersection between two variables, allowing
for an intuitive visualization of their interactions. For example, in a correlation matrix, the
HeatMap is used to display the strength and direction of linear relationships between pairs of
variables.

Additionally, HeatMaps are useful for identifying anomalies or seasonal patterns in the
data. In practical applications, such as time series forecasting, they can be used to analyze
the relevance of input variables, identify periods of greater concentration of extreme values,
or understand the influence of external factors on the analyzed data. HeatMaps can be
implemented in tools such as Seaborn or Matplotlib, which allow the customization of color
scales, labels and annotations, expanding the ability to interpret the results.

In this way, the use of HeatMaps provides a powerful visual approach to understand
and communicate complex information, being an essential tool in studies that require the
analysis of large volumes of data and their interrelationships.

The choice of input data in the RNN architecture, illustrated in Figure 4, was based on
the analysis of the correlations between the system variables. The HeatMap, presented in
Figure 6, shows the correlation relationships between different variables, making it possible
to identify those with the greatest impact on the behavior of the system and, therefore, more
relevant to the model.

Thus, the power sources were chosen as the input variables for the training, and one

of the loads (in this case, Load 2) was selected as the grid output variable.
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Figure 6
HeatMap

Source: The author

2.1.1.3 TensorFlow and Keras

TensorFlow and Keras are essential tools for developing deep learning models,
especially for time-series tasks such as predicting power flow variables in power grids.

TensorFlow, powered by Google, is a highly scalable and efficient open-source library
designed to perform complex mathematical operations and support model training on high-
performance hardware such as GPUs and TPUs. Keras, integrated as TensorFlow's high-
level API, provides a modular, easy-to-use interface for building neural networks, allowing
researchers to focus on the conceptual and experimental aspects of modeling.

In the model developed in this work, several features of TensorFlow and Keras were
explored for their simplicity and efficiency in implementation. The architecture was built using
the Sequential class, which organizes the layers in a linear fashion and is suitable for neural
networks that process sequential data, such as the LSTMs employed in this study. The LSTM
layers formed the backbone of the model, designed to capture temporal patterns and long-
term dependencies on the input data. This capability is critical in time series analysis in power
systems, as current load values are strongly influenced by past variations of active and
reactive powers.

To enhance the learning process, a Bidirectional layer was added, which allows LSTM
to analyze the data both in the direct and inverse direction of time. This approach is
particularly advantageous in power flow forecasting, where future operating conditions can

also be influenced by past interactions between generation and demand.
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In addition to the LSTM layers, Dense layers were included, responsible for performing
linear and nonlinear transformations in the internal representations, connecting the LSTM
outputs to the final predictions. The output layer was configured with two neurons,
corresponding to the active (P) and reactive (Q) powers of the selected load, ensuring that
the model produced predictions aligned with the physical quantities of interest.

For the training, the model was compiled using the Adam optimizer, which is known
for its efficiency in deep learning tasks due to adaptive adjustment of the learning rate. The
loss function chosen was the Mean Absolute Error (MAE), which is suitable for regression
problems and provides a direct interpretation of the mean of the differences between
predicted and actual power values.

After training, the predictions were generated with the Keras predict function,
integrated into the processing flow. Overall, TensorFlow and Keras stood out not only for their
ease of use, but also for offering advanced solutions to complex problems, such as capturing
temporal dependencies in the operation of electrical systems. These frameworks were
instrumental in ensuring the efficiency, flexibility, and scientific rigor of the proposed

forecasting model.

2.1.1.4 Genetic Algorithm for Hyperparameter Optimization

Genetic Algorithms (GAs) are a class of stochastic optimization techniques inspired by
the principles of natural selection and genetics. Initially proposed by John Holland in the
1970s, AGs are widely used to solve optimization problems where the search space is
complex, nonlinear, or difficult to approach by traditional gradient-based methods. Their
robustness and adaptability make them suitable for a wide variety of engineering applications,
including machine learning and power system analysis.

At their core, AGs operate on a population of candidate solutions, called individuals,
that are represented by chromosomes (often encoded as binary chains, real value vectors,
or more complex structures, depending on the problem). Each chromosome corresponds to
a potential solution, the quality of which is evaluated through a fithess function that measures
how well it meets the optimization objective.

The process of a GA follows the following key steps:
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« Initialization: A population of candidate solutions is randomly generated within the
defined search space. In the context of hyperparameter optimization in neural
networks, these candidates can represent configurations such as number of LSTM
cells, dropout rates, learning rate, and number of training epochs.
« Selection: Individuals are selected based on their fitness scores, favoring those who
perform best. Strategies such as roulette, tournament, or ranked selection ensure that
the strongest individuals are more likely to pass on their traits to the next generation.
o Crossover: Pairs of selected individuals exchange parts of their chromosomal
representations to generate offspring. This process mimics biological reproduction,
promoting the combination of advantageous characteristics of different solutions.
e Mutation: Random changes are introduced into the chromosomes of offspring with a
small probability. The mutation ensures diversity in the population, avoiding premature
convergence to suboptimal solutions.
o Replacement: A new population is formed, usually combining the best individuals from
the previous generation with the newly generated offspring. The cycle of evaluation,
selection, crossover, and mutation is repeated for a set number of generations or until
the convergence criteria are met.
2.1.1.4.1 Application in this work

In the present study, the Genetic Algorithm was employed to optimize the
hyperparameters of the LSTM-based prediction model developed for the IEEE 30-bar
system. Instead of manually selecting parameters through trial and error, AG performed an
automatic search for the best combination of hyperparameters that would minimize prediction
error.

The following hyperparameters were encoded in the AG chromosomes:

e Number of LSTM units per layer: AG explored different configurations of hidden
neurons, balancing the complexity of the model and its ability to generalize.

« Number of training seasons: By optimizing this parameter, AG ensured efficient
convergence without causing overfitting or underfitting.

« Dropout rate: AG adjusted the level of regularization to avoid overfitting, which is

particularly important in sequential models with high representation capacity.
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« Learning rate: although it has been fixed in part of the experiments, this parameter can
also be optimized by the AG to refine the speed of convergence and the stability of the

training.

The fitness function was defined as the Mean Absolute Error (MAE) between the
predicted and actual load values (active and reactive powers), after training the model with a
certain set of hyperparameters. Lower MAE values indicated better performance, guiding the
evolutionary search towards more suitable configurations.

With the integration of the AG into the modeling process, the model achieved a final
MAE of 0.0507, a result higher than that of reference models with manually adjusted
hyperparameters. This performance highlights the efficiency of AGs in exploring large search
spaces and their ability to adaptively identify optimal solutions to complex problems, such as

time series forecasting in electrical systems.

Figure 7

Genetic Algorithm Schematic
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Source: the authors
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3 CASE STUDY AND RESULTS OBTAINED

Once the methodology for the implementation of power flow forecasting was
established, its validation necessarily depended on the comparison of the model's
performance in relation to a reference case derived from a real distribution feeder.

The code was implemented in Python to predict the active (P) and reactive (Q) powers
of a selected load, using as inputs the generation data and auxiliary variables of the system.
This approach allows the model to capture temporal and operational patterns inherent in the
dynamics of power systems, ensuring accurate short-term forecasts. Such forecasts are
crucial for the planning and operation of modern electrical systems, especially in scenarios
with distributed generation and fluctuating demand. The procedure adopted and the

considerations on the results obtained are presented below.

3.1 SPLITTING THE DATASET

Splitting the dataset is a critical step in ensuring that the model learns reliable patterns
and is able to generalize to unseen data. In this study, a temporal division was adopted,
allocating 80% of the samples for training and 20% for testing. This division preserves the
chronological order of events, avoiding data leakage, a fundamental aspect in time series
forecasting. Unlike random splits, which are often used in other machine learning tasks, time
sequence maintenance better reflects the model's real-world applications in operational

scenarios.

3.2 CONSTRUCTION OF THE SEQUENCES

Since LSTM networks are designed to process sequential data, the code employed a
sliding window strategy to construct the temporal sequences. Specifically, each input
sequence was composed of 20 consecutive instants of system operation, while the output
corresponded to the active and reactive power values of the target load at the subsequent
instant. This configuration provides the model with enough historical context to learn the

temporal dependencies on the payload's behavior.

3.3 NEURAL NETWORK ARCHITECTURE
The neural network architecture is designed to capture both the temporal and
nonlinear dependencies present in the power flow data. It is composed of stacked layers of

Bidirectional LSTM, fully connected dense layers, and a linear output layer. Unlike fixed
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architectures, the configuration of this model — such as the number of LSTM units per layer
and the number of training epochs — was not chosen arbitrarily. Instead, a Genetic Algorithm
(GA

Bidirectional LSTM layers: two bidirectional layers with different unit numbers (e.g., 64,
128) were tested, allowing the network to learn temporal dependencies in both forward and
reverse. This is especially relevant in electrical systems, where current conditions may
depend on both past and evolving states.

Dropout regularization: a dropout rate of between 1% and 5% was applied in order to
mitigate overfitting and ensure that the model generalized well to unseen operating
conditions.

Dense Layer: after LSTM, a dense layer of variable size (optimized by the AG) was
included to refine the representations learned before the final output.

Output Layer: the final layer contained two neurons, corresponding to the active (P)

and reactive (Q) power predictions of the selected load.

3.4 OPTIMIZATION OF HYPERPARAMETERS WITH GENETIC ALGORITHM

The Genetic Algorithm played a central role in choosing the optimal configuration of
the model. The candidate solutions (chromosomes) encoded hyperparameters such as the
number of LSTM cells per layer and the number of training times. AG evolved these solutions
over the generations, through the processes of selection, crossover , and mutation,
converging on architectures that minimized validation error. This evolutionary approach
proved to be efficient in balancing the complexity of the model and its predictive accuracy.

It is important to highlight that the hyperparameters obtained represent the best
configuration for the dataset and operational conditions of this study. However, different
datasets or electrical system scenarios may require alternative configurations, reinforcing the
flexibility of combining LSTM networks and evolutionary optimization techniques such as

Genetic Algorithms.

3.5 MODEL COMPILATION AND CONFIGURATION
After defining the architecture, the model was compiled with the following elements:
e Loss Function: the Mean Absolute Error (MAE) was used. Unlike Mean Square Error
(MSE), which penalizes large deviations more severely, MAE provides a more direct
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interpretation metric in the context of power flow, representing the average magnitude
of forecast errors in both active and reactive powers.

e Adam Optimizer: Adam (Adaptive Moment Estimation) was adopted, which combines
advantages of RMSProp and Stochastic Gradient (SGD). Adam dynamically adjusts
the learning rate of each parameter based on first- and second-order estimates (mean
and variance), accelerating convergence and ensuring stability in the training of

complex sequential data.

3.6 MODEL TRAINING

The training was carried out over 15 seasons, with a batch size of 32 samples. During
the training, the following strategies were applied:

Adaptive Learning Rate: although the ReduceLROnPlateau callback was not explicitly
used , the learning rate was adjusted empirically and also by the Genetic Algorithm, ensuring
convergence without significant oscillations.

Loss Function Monitoring: training and validation losses were tracked at each time in
order to detect signs of overfitting or underfitting. The evolution of these losses is shown in
Figure 7 (Training and Validation Loss Graph), confirming the stable learning process of the

model.

3.7 MODEL EVALUATION

After training, the model was evaluated in the test set to measure its generalizability. The
evaluation involved the following steps:

Denormalization: Both the predicted and actual values have been rescaled to their
original units using the adjusted MinMaxScaler objects . This ensured that the evaluation
metrics were interpretable within the physical context of the power flow.

Mean Absolute Error (MAE): the final MAE obtained was 0.0507, reflecting a high degree
of accuracy considering the active and reactive power scale in the IEEE 30-bar system. This
low error demonstrates the robustness of the model and its ability to capture complex
temporal and nonlinear relationships.

Visualization of Forecasts: comparative graphs were generated between actual and
predicted values for the active and reactive powers of the target load. These graphs,

presented in Figures 8 (Active Power — P2) and 9 (Reactive Power — Q2), highlight the
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model's ability to follow trends and fluctuations, confirming its effectiveness in short-term

prediction of load behavior.

Figure 8

Loss chart
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Source: the authors.

Figure 9

Comparison of actual and forecasted data from P2
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Source: the authors.
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Figure 10

Comparison of actual and forecasted data from Q2

Valor Real — load2:ql

load2:ql

0 = 50 i3 100 15 150 75 200
Amostra

Valor Previsto — load2:ql

load2:ql

Source: the authors.

4 STRENGTHS AND LIMITATIONS OF THE STUDY

Most studies that analyze predictions in electrical power systems do not combine
recurrent neural network techniques with long-term memory units (LSTM) and Genetic
Algorithms (AG) for hyperparameter optimization in load prediction problems. As a strong
point of our study, we highlight precisely the use of this integrated approach, which allowed
an automatic adaptation of the neural network and reduced subjectivity in the choice of
training parameters. In addition, we emphasize that the analysis was performed using data
derived from a standard system widely accepted in the literature (IEEE 30 bars), ensuring the
reproducibility and comparability of the results. Another positive aspect is that the results
achieved a relatively low mean absolute error (MAE), which reinforces the robustness of the
proposed model and its practical usefulness for forecasting applications in the electricity
sector. Thus, we believe that the results of this study are of great relevance, as they offer
initial evidence on the applicability of deep learning techniques combined with evolutionary

algorithms in power flow scenarios.
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However, we recognize that our study also has limitations. First, it was conducted
considering only the prediction of the active and reactive power of a specific load, which
restricts the generalization of the results to the entire system. In addition, although the results
were satisfactory, the use of simulated data limits the external validity, since noise,
measurement failures or contingencies typical of real systems were not considered. Another
limiting point is the computational cost associated with the Genetic Algorithm, which can
become high in real-time applications or in larger systems. Other limiting factors include the
reduced temporality of the analyzed database and the absence of testing under extreme
event scenarios or anomalous operating conditions. Although the model has shown predictive
capacity under normal conditions, it has not yet been validated in situations of greater
variability or electrical disturbances, which are common in real networks.

Therefore, additional research is suggested, especially those involving larger systems
and real operation data, to assess the robustness of the model under more challenging
conditions. It is also recommended to investigate other optimization metaheuristics, as well
as to expand the scope to multiple simultaneous loads, in order to increase the applicability

and generalization of the proposed method.

5 CONCLUSIONS

The results obtained in this study demonstrate the effectiveness of Recurrent Neural
Network (RNN) models, with Long Short-Term Memory (LSTM) units, for the prediction of
load power (active and reactive components) in the IEEE 30-bar system. The proposed
model, optimized by means of a Genetic Algorithm for the selection of hyperparameters,
achieved a Mean Absolute Error (MAE) of 0.0507, which indicates a high level of accuracy in
capturing temporal patterns from historical power flow data.

While the model is designed to predict the active and reactive power of a single load,
the methodology can be easily extended to multiple loads and more complex grid
configurations. The use of the active and reactive powers of the generators as input variables
proved to be sufficient to model the dynamics of the selected load, reducing computational
complexity and, at the same time, maintaining a robust predictive performance.

The integration of the Genetic Algorithm was particularly important, as it enabled an
automatic search for optimal hyperparameters — such as the number of LSTM cells per layer
and the number of training epochs — resulting in higher convergence speed and lower

prediction error compared to manually tuned models.
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This work represents a significant contribution to the development of intelligent
forecasting techniques applied to power systems, offering a solid foundation to improve
operational planning, reliability and efficiency in smart grids. Future research may explore the
application of this approach to all loads of the IEEE 30-bar system, the inclusion of stochastic
renewable sources, and the use of hybrid optimization techniques, with the aim of further
refining the predictive capacity of neural network-based models in applications in the

electricity sector.
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