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ABSTRACT

The main objective of the analysis is to review and discuss the principles of the similarity
method applied to the boundary layer on inclined surfaces, in laminar regime, and that can
be extended to a turbulent regime. The emphasis applies to theoretical aspects related to the
concept of similarity, but theoretical results were obtained to compare with empirical
expressions and experimental results. Results are obtained for the hydrodynamic and
thermal fields, such as coefficient of friction and Stanton number, as a function of the pressure
gradient parameter and the Prandtl number. The fourth order Runge-Kutta method is applied,
starting from the expansion in power series as the first approximation for the mathematical
solution of hydrodynamic and thermal problems, in laminar regime. The Integral Method is
applied to obtain an approximate solution for the flow in turbulent regime, by similarity
variables method. Numerical and graphical results are presented in sufficient numbers to
emphasize the consistency of the model developed in the determination of parameters
related to thermal and hydrodynamic boundary layers on smooth and rough surfaces.

Keywords: Similarity Method. Fourth Order Runge Kutta Method. Hydrodynamic Boundary
Layer. Thermal Boundary Layer.

RESUMO

O principal objetivo da analise é revisar e discutir os principios do método da similaridade
aplicado a camada limite em superficies inclinadas, em regime laminar, e que pode ser
estendido a um regime turbulento. A énfase recai sobre aspectos tedricos relacionados ao
conceito de similaridade, porém resultados tedricos foram obtidos para comparar com
expressoes empiricas e resultados experimentais. Resultados sdo obtidos para os campos
hidrodinadmico e térmico, tais como coeficiente de atrito e numero de Stanton, em funcéo do
parametro de gradiente de pressao e do numero de Prandtl. O método de Runge-Kutta de
quarta ordem é aplicado, partindo da expansdao em série de poténcias como primeira
aproximacao para a solu¢ao matematica dos problemas hidrodinamico e térmico, em regime
laminar. O Método Integral é aplicado para obter uma solugdo aproximada para o
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escoamento em regime turbulento, por meio do método das variaveis de similaridade.
Resultados numéricos e graficos sao apresentados em quantidade suficiente para enfatizar
a consisténcia do modelo desenvolvido na determinagdo de parametros relacionados as
camadas limite térmica e hidrodinamica em superficies lisas e rugosas.

Palavras-chave: Método da Similaridade. Método de Runge-Kutta de Quarta Ordem.
Camada Limite Hidrodindmica. Camada Limite Térmica.

RESUMEN

El principal objetivo del analisis es revisar y discutir los principios del método de similitud
aplicado a la capa limite en superficies inclinadas, en régimen laminar, y que puede
extenderse a un régimen turbulento. El énfasis se centra en los aspectos teoricos
relacionados con el concepto de similitud, pero se obtuvieron resultados tedricos para
compararlos con expresiones empiricas y resultados experimentales. Se obtienen resultados
para los campos hidrodinamico y térmico, tales como el coeficiente de friccion y el numero
de Stanton, en funcion del parametro de gradiente de presiéon y del numero de Prandtl. Se
aplica el método de Runge-Kutta de cuarto orden, partiendo de la expansion en series de
potencias como primera aproximacién para la solucion matematica de los problemas
hidrodinamico y térmico, en régimen laminar. El Método Integral se aplica para obtener una
solucion aproximada para el flujo en régimen turbulento, mediante el método de variables de
similitud. Se presentan resultados numéricos y graficos en cantidad suficiente para enfatizar
la consistencia del modelo desarrollado en la determinacion de parametros relacionados con
las capas limite térmica e hidrodinamica en superficies lisas y rugosas.

Palabras clave: Método de Similitud. Método de Runge-Kutta de Cuarta Orden. Capa Limite
Hidrodinamica. Capa Limite Térmica.
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1 INTRODUCTION

The aspects related to laminar regime are based on the deep study carried out by
Evans (1968), and in turbulent regime the text of Kays and Crawford (1966).

It is assumed that there is no mass transfer through the surface (without surface
perspiration effect) and that the perpendicular component of velocity is zero. In addition, the
velocity component parallel to the surface is also zero, a condition called "no slip on the wall"
in the specialized literature. All the presented solutions and results assume constant
properties, unaffected by the variation of temperature, and the velocities are sufficiently low
so that the viscous dissipation term can be neglected.

The basic equations for boundary layer similarity conditions are widely discussed
Schlichting (1968); Evans (1968), Kays and Crawford (1983), Silva Freire (1990), and only
essential details for the understanding of the arguments are presented in this work. Details
on flat plate flow are discussed by Nogueira and Soares (2018).

There are in the literature many ways of specifying the existence of similar solutions
for the laminar boundary layer equations. The main characteristic associated with the concept
of boundary layer similarity is that the undisturbed velocity distribution of the potential flow
must satisfy the following expression, which follows the original suggestion of Falkner and
Scan (1931):

U(x)=Cx™ €y

Where:
C is the value of U (x) where x is unitary, and the value of m depends on the pressure gradient in the

main direction of the flow.

However, according to Spalding and Pun (1962), it is convenient to impose that U (x)

satisfies the following equation:

du 2(B-1)
—=CU P (2)
Where:

B is a parameter that is associated with the pressure gradient in the direction of the main flow.
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The potential theory, applied around an angle wedge B1/2 Evans (1988), satisfies

equation 3.11, above, where:

"Te fﬁ) @
and,

1dU U 1

Fax~x@-h) @
However:

w=pU 5)

The specification of U (x) is equivalent to specifying the pressure gradient, which is a

function of B:

ap _ B U
w- PUapx (6)

The parameter B, as can be seen, depends only on the velocity distribution in the
external region to the boundary layer, the variable x along the surface and the pressure
gradient.

We are interested in the flow conditions where -0.2<3<1.0, representing the limits of
the boundary conditions for the pressure gradient parameter between the boundary layer
detachment $=-0.2, and the two-dimensional stagnation flow =1.0, in the laminar regime

(Figure 1).
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Figure 1

Flow on an inclined surface of angle B3

Source: The authors.

The differential equation governing the velocity distribution at a similar boundary layer
for laminar regime within the range of the already established pressure gradient parameter 3
is given by Schlichting (1968); Evans (1968), Kays and Crawford (1983), Silva Freire (1990):

frHffr+p (- =0 (7)

With the following boundary conditions:

n=0, f=f"=0 (8)
n—oo, f'->10 9)
Where:

f and n are defined by:

B X(%)uz Y/v

n= e f =g
*V2-p CoNERY]

(10)
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Where:

x and y are, respectively, the primitive coordinates along the surface and perpendicular to it.

Choosing the coordinate n as a function of y / x, which is very small, except at x = 0,
by the square root of the Reynolds number, Re, = (%)1/2, which is very large, we impose

y/x is small, but n is not.
From the definitions of n and f, we have expressions for the components of

dimensionless velocities:

N[ =

vdU df
u=U— e v=—(Ea) [f+(,3—1)77% (11)

The last boundary condition, Equation 3.1.7.2, means that as n grows f’' = u/U should
approach the unit without exceeding it. The value of n, in this case, is called 1., for a given
value of B.

Due to the difficulty in solving the above boundary condition problem with reasonable
precision, we apply the 4th order Runge Kutta Method Tannehill et al. (1997), with initial value
of f(0) given after application of the Power Series Method.

The approximate solution by the power series method with the Shooting Method
Tannehill et al. (1997); Oderinu, R. A. (2014), as an approximation procedure for the velocity
profile is obtained by assuming that the function f (n) satisfies the following expansion in

series:

2 5 6 n
n n n n
f(T))=CzE+C5§+C6a...+CnH (12)

With the following recurrence rule:

1 1 1
Cryz = —n! Tm=1) (B.C.Cy) + m(cz-cn + B.C5.Chq) + m(%-%—ﬂ

tare—an G5 Cn-d) (13)

for n=4.
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1 1
C3=—ﬁ;C5=—2(ﬁ+§)C22 e C6=6/3(/3+§>Cz (14)
The term C2 corresponds to f "(0), that is:

C; = f"(0) (15)

Through Shooting Method Tannehill et al. (1997); Oderinu, R. A. (2014), or other
approach method, as the "Bisection Method", we can obtain the value of C2, with the desired
approximation. However, the approximation method through the series solution is slow, in
order to obtain the necessary solution for our purposes. In this sense, we apply the fourth
Runge-Kutta method Tannehill et al. (1997), with initial value for f " (0) from the expansion in
power series. As the Runge-Kutta method is a high-precision numerical method, coupled with
the Newton-Raphson method, the final solution for the velocity field in the hydrodynamic
boundary layer is obtained in less time than necessary for the series solution, with the same
precision.

The energy equation for determining the dimensionless temperature field is given by:
d (6 +Pr.f.0'=0 16
n r.f.0" = (16)

The temperature profile shall satisfy the following contour conditions for the specified

surface temperature:

n= 0, 6=0 (17)
n—o, 6-10 (18)
Where:

Pr is the number of Prandtl, and

T_TW

0 =
Too — Ty

(19)
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It is assumed that T, temperature outside the boundary layer, is not affected by the
heat rate removed outside of the boundary layer. The value of Ty, corresponds to the surface
temperature (reference!).

The energy equation, Equation 14, is linear and less complex than the velocity field
equation. However, it strongly depends on the solution of the velocity profile, since f appears
explicitly in the second term. Therefore, the greater the precision in the solution of f, the better
the solution in 6.

The Runge-Kutta method is used for solution of the temperature field, but it is observed
that the limit value for n, n —» o, is not necessarily the same as that obtained for the velocity
field, for a given B. As an alternative, in terms of comparison, a second solution is obtained

by directly integrating the energy equation Kays and Crawford (1983); Evans (1968):

n 1
0 = 9{,.f exp [—Pr.f f.dn]dn (20)
0 0
n
0' = 6).exp [—Pr.f f.dn] 21
0
Where:

0, 'is the value of the surface temperature derivative:

1

0 -1, n — oo 96 ==
Iy exp [=Pr. [ f.dn]dn

(22)

However, the application of Equation 3.1.18, above, does not provide adequate
accuracy to obtain the surface temperature gradient. In this sense, we chose to use Evans's

procedure, in 6.

Therefore,
do 3 Pr.fy 4
Y =270 N1/3 2
G =53 (23)
Where:
1 - a
E= (—)+ N (24)
3 qzoPr§
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I' is the gamma function:
1
r (§) = 2.6789385 (25)

Expressions for a, contains the pressure gradient parameter 3, the dimensionless

viscous stress on the wall f"'(0) , and numerical factors derived from the combination of
gamma functions and are not presented. The complete procedure for the exact determination
is found in Evans (1968). In addition, Equation 19, for determining the temperature gradient
at the surface, presents unsatisfactory results as  tends to the flow separation value (8 = -
0.2). Evans (1968) describes an alternative procedure for this case, but it will not be the
subject of discussion in this analysis.

In turbulent regime there are no analytical solutions for the boundary layer equations.
An alternative for the determination of turbulent boundary layer parameters is the

approximate solution of Von Karman's equation:

% - % - pT—L“,”Z (26)

Even in the zero-pressure gradient, flat plate flow, Von Karman's equation has more
unknowns than equations. Thus, it is necessary to relate the unknown by specifying a
dimensionless velocity profile.

For comparison purposes, in relation to the laminar regime, in this work, values for
turbulent flow are determined on smooth and rough inclined surfaces, by means of an
approximate theoretical model. Turbulent flow with 1/7 power is used, and experimental
results of Schultz-Grunow (1941), Pimenta et al. (1975), Schlicthing and Prandtl (1968), Kays
and Crawford (1983).

The theoretical procedure, in this case, corresponds to the one recommended by Kays
and Crawford (1983), for flat plate flow, where the conditions of similarity are satisfied. In fact,
the valid procedure is used for flat plate, for determination of the profiles of speed and
temperature, and generalizes situations where 8 + 0, through the concept of the shape factor,
H;,, and correction formulas obtained by Kays and Crawford (1983).

For the approximate determination of the turbulent velocity profile, associated with the

integral equation of momentum, a power law of type 1/7 is very convenient:
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u* = 8.75y+"" 27)

The above expression represents the speed profile up to y* = 1500 a little better than

the equation, much used in algebraic simulations, called "Logarithmic Law in the Wall".

i
(o]
N
©

(28)

If Equations 3.1.22 and 3.1.23 are valid throughout the boundary layer, and that the

thickness & corresponds to the position where the velocity is equal to U, we have:

(29)

The displacement, §,, and momentum thickness, §,, can be evaluated by the following

expressions:

51=f <1—£)dy (30)
0 Upoo
And
N U
%= | pwU(l U)dy (31)

The integral equation of the momentum, in similar coordinates, is given by:

1 1d 8, dU
" — — _ 2
£"(0) =3 U U8+ (32)
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or
Where:
Hy, =% denominated shape factor (34)

2

For similar boundary layer, each §,, is a constant and therefore the shape factor is a
constant. It is important to note that Equation 3.1.28 is valid for laminar and turbulent regime.
The shape factor increases in an adverse pressure field, B <0. For flow in turbulent boundary
layer, H increases from 1.29 to null pressure gradient 3 = 0, to approximately 2.7 in the
separation condition g = 0.2 Simpson (1989). For accelerated flow the value of H increases
again, as a function of the "tendency to laminar flow" effect, and tends to 1.47 for two-
dimensional stagnation flow, B = 1 Smith (1966). The velocity distribution, U (x), must be
known prior to the application of the integral momentum equation, Equation 3.1.28.

The displacement thickness, §;, has the effect of displacing the undisturbed main flow
current function with respect to the value it should have for ideal, non-viscous fluid. The
momentum thickness, §,, is the extent to which the amount of fluid movement in the boundary
layer is below what should be for an ideal fluid. The viscous thickness, §,, inverse of f "(0), is
the measure of the resistance offered for transferring the amount of movement of the main
stream to the surface.

There are two predominant regions to be analyzed in a turbulent boundary layer:

1 — A predominantly viscous region close to the surface, where viscous stresses and

molecular conduction prevail.

2 — A completely turbulent region where the amount of movement and heat are

transported in rates generally much higher than that of the viscous sublayer.

It is in the viscous sublayer, however, where events associated with turbulence occur
and are of greater importance than the fully turbulent region. The viscous forces, largely
responsible for the characteristics of the laminar flow, have the effect of restoring the laminar
flow in turbulent flow and, otherwise, the inertial forces associated with the local variations of

the velocity field have the opposite effect. In fact, inertial forces tend to amplify local

\V4

Expanded Science: Innovation and Research
HEAT TRANSFER AND FLUID DYNAMICS ON INCLINED SMOOTH AND ROUGH SURFACES BY THE
APPLICATION OF THE SIMILARITY AND INTEGRAL METHODS



disturbances. It is to be expected, therefore, that the stability of the laminar flow is associated
with low numbers of Reynolds, ratio between the forces of inertia by the viscous forces.
Although instability is an essential feature in the viscous sublayer, the turbulent boundary
layer structure adjusts itself, constructing a relatively stable structure with stability
characteristics (there is regularity!).

At turbulent flow, along the surface, the laminar sublayer becomes narrow and
becomes an increasingly smaller fraction of the entire boundary layer. In essence, the
turbulent boundary layer has the property of diffusing the amount of movement, and other
properties of the flow, much more rapidly than the simple molecular process.

Equations 3.1.26 and 3.1.27, together with the integral equation of momentum,
Equation 3.1.28, can be used to obtain the coefficient of friction in the turbulent boundary
layer. Note, however, that the velocity profile is valid for null pressure gradients, that is, B =
0. For situations in which the pressure gradient is different from zero, correction must be
made. The expression for the coefficient of friction, B = 0, is given by Kays and Crawford
(1983):

Cf _ 0.0594 -
2 2Re (35)

Which can be compared with the experimental equation obtained by Schultz-Grunow
(1941):

—2.584

Cz—f = 0.185(Log;o(Rey)) (36)

In turbulent boundary layer analysis, it is convenient to define some type of similarity.
However, the task is not as simple as in laminar boundary layer. In turbulent flow, in a region
very close to the surface, it is observed that u*= y* e, logically, the principle of similarity
applies. Outside this region and in the explicit coordinate system, the principle generally does
not apply. However, there are some classes of turbulent flow that have similarity, even outside
the laminar sublayer.

Turbulent boundary layer that has similarity outside the laminar sublayer is called the
boundary layer in equilibrium. The equilibrium boundary layer is the one that satisfies the

following velocity profile:

\V4
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u—U y
—F (—) 37)
Tw b3
p
Where
Cu—-U
5=~ dy (38)
0 Tw
p

For laminar boundary layer it was demonstrated that Equation 01 must be satisfied for
similarity solutions to exist. In turbulent boundary layer this same type of free-flow velocity
profile must be satisfied, so that equilibrium boundary layer occurs, satisfying the similarity
principle Kays and Crawford (1983).

The turbulent coefficient of friction for the equilibrium boundary layer can be correlated

with B through an empirical relation Kays and Crawford (1983):

Cf/z _ 1
(Cf/2)5=o (1+ g)

(39)

For turbulent boundary layer, assuming equilibrium boundary layer, the Stanton
number is determined for null pressure gradient, B = 0, through the expression Kays and
Crawford (1983):

cf
St, = /2 (40)
Cf/z (13.2Pr — 10.16) + 0.9

2 RESULTS AND DISCUSSIONS

Results were obtained for velocity and temperature profiles, and associated values,
such as friction coefficient and Stanton number, as a function of the pressure gradient
parameter and Prandtl number. Numerical results were computed using Fortran (1995)

language and graphical results were obtained through software Grapher (2004).

Expanded Science: Innovation and Research
HEAT TRANSFER AND FLUID DYNAMICS ON INCLINED SMOOTH AND ROUGH SURFACES BY THE
APPLICATION OF THE SIMILARITY AND INTEGRAL METHODS



\V4

Figure 2 presents results for velocity profile, f', and dimensionless viscous stress, f",
for laminar regime in extreme situations, in =-0.2 and B=1.0, in relation to the results
obtained for flat plate, =0. These conditions, as already pointed out, represent, respectively,
the surface boundary layer detachment condition and the two-dimensional stagnation flow
condition. It is observed that, for f=-0.2, the viscous stress is equal to zero on the surface,

as expected.

Figure 2
Solutions for dimensionless viscous velocity (f’) and velocity profile (f)
1.2
Theoretical Solution - Laminar Regime
4 \f")-B=1.0
f() - B=10
e f(n) -~ B=0.0
e — (M) -B=-02
. i
G
04 | S ) -pB=0.0
] f"(n)—p=-0.2
° | |
(6] 2 4 6
T

Source: The authors.

In Equation 7, for g =0, since f'=0 on the wall, f'" is also zero and, as a
consequence, f'’ has a maximum value on the wall. For § < 0 values, "' also has a maximum
value, but the maximum point distances itself from the wall, and the values of f’ on the wall
are lower than that of g = 0.0. In fact, it can be observed that the viscous tension in the wall
decreases to negative f values and becomes zero in § near -0.2.

For accelerated flows, g > 0, the maximum value also occurs on the wall, and these
values increase with increasing acceleration of the flow. Since the viscous stress is zero on

the wall, where the separation of the flow occurs, f' has a minimum at this point, as can be
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seen from Figure 2 For accelerated flow, f = 1.0, a decrease in the displacement thickness,
relative to flat plate flow, g = 0.0, can be observed.

Table 1 present comparisons of results for displacement thickness, §;, momentum
thickness, &§,, and the inverse of shape factor, H,,, in laminar regime. The consistency of the
results obtained can be verified. For highly accelerated flows, better consistency is achieved

between models.

Table 1

Numerical comparisons in laminar regime for the inverse of Shape Factor (H,,)

Results Evans (1968)

B 01 02 Hz1 o
1 2 21

-0.2** | 2.3587 0.5852 | 0.2400 0
.3588 .5854 .2482

-0.019 | 2.0064 0.5762 | 0.2834 0
.0068 5765 .2873

-0.18 1.8714 | 0.5673 | 0.3006 0
.8716 5677 .3033

-0.15 | 1.6468 0.5449 | 0.3295 0
6470 5452 .3310

-0.12 | 1.5111 0.5258 | 0.3472 0
5113 5263 .3482

-0.10 | 1.4423 0.5147 | 0.3562 0
4427 5150 .3570

0.0 1.2164 0.4695 | 0.3856 0
2168 4696 .3859

0.2 0.9839 0.4081 0.4147 0
.9842 4082 4148

0.3 0.9108 0.3856 | 0.4234 0
9110 .3857 4234

0.4 0.8525 0.3666 | 0.4300 0
.8527 .3667 4301

0.6 0.7639 0.3359 | 0.4397 0
7640 .3359 4397

0.8 0.6986 0.3119 | 0.4464 0
.6987 3118 4463
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1.0

0.6480

0.2924

0.4514

.6480

.2923

4513

**B = —0.19883768

Source: The authors.

Figure 3 presents results for temperature profile and dimensionless temperature
gradient in laminar regime and Pr = 1.0. The most important results, which should be
emphasized, are the values of the surface temperature gradient, since the integral
parameters associated to the temperature field are strongly associated with it. It can be
observed that the temperature gradient decreases with lower values of B, ie, the more
accelerated the flow, the greater the temperature gradients in the wall. Equivalent to what
occurs with the thickness of the hydrodynamic boundary layer, the thermal boundary layer
thickness also decreases to higher g values. In addition, another factor to be emphasized,
the profile and the temperature gradient depend strongly on the solution of the velocity field,

according to Equations (16) and (17).

Figure 3
Temperature profile (6) and dimensionless temperature gradient (6") for laminar thermal
layer (Pr=1.0)

o(m)-p=1.0

6(n) - p=0.0

0'(m) - B =1.0

0(n), 6'(n)

Theoretical Solution
Laminar Regime

0'(n) - B =0.0

. 0'(n)-p=-0.2

Source: The authors.
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Figure 4 presents the results of a dimensionless coefficient of friction in the laminar

regime determined by:

cf [

2 1
Rex2(2 - .8)1/2

and

cf F(p) LE=9,

(5) empiricat =
27 a+5

Cf(B=0) 0332

1
2 Re,?2

Where:

(41)

(42)

(43)

F(B) = 0.992436221 + 3.6703155838 — 2.3827784743% + 2.203613278p3 (44)

F(B) is obtained empirically from the data available in Evans (1968).

Figure 4

Dimensionless coefficient of friction (Cz—f) as a function of the Reynolds number (Re,, for

laminar regime.

Laminar Regime

B=1.0

Theoretical Runge Kutta
3< Equation (38)

100000

Source: The authors.
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It is observed that the new empirical solution, Equation 42, is very convenient, since it
eliminates the need to solve the hydrodynamic boundary layer equation to obtain the
coefficient of friction for the entire range of 3. This is one of more significant and important
result presented in this work, since the results differ significantly only for values of 8 <-0.15,
and low Reynolds number values along the surface.

Figure 5 shows the results obtained for the dimensionless friction coefficient for
turbulent regime on smooth surface. The highlight corresponds to the Schultz-Grunow (1941)
modified solution. The analytical solution, Equation 35, and Schultz-Grunow's empirical
equation, Equation 46, associated with the modification proposed by Kays and Crawford
(1993), for pressure gradient flows within the range analyzed in this work, -0.2< g <1.0, are
in good agreement. It is, therefore, a result compatible with that presented in Figure 4, since
the solution eliminates the need to solve the system of equations for velocity field where g is

different from zero.

Cf  0.059 )
2 B
2Re,* x (1+7%)
c 0.185(Logso(Rey)) >0
Do = | : | (1+5) (46)
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Figure 5

Non-dimensional coefficient of friction (Cz—f) as a function of Reynolds number (Re,, for

turbulent regime on smooth surface
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All previous discussion assumes boundary layer for smooth surface. The effect of
roughness on the turbulent boundary layer occurs primarily close to the surface, and this
leads to the definition of a rough Reynolds number:

u‘tks

Rey = 47
ek 9 ( )

Where:

ks is the absolute roughness.

Figure 6 shows the comparison between valid results for smooth and rough surfaces,

for any range of values of the pressure coefficient previously defined, 0.2<<1.0.
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Figure 6
Comparison for dimensionless friction coefficient (Cz—f) between smooth and rough surfaces in

turbulent regime
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Source: The authors.

The characteristics of the hydrodynamic and thermal boundary layer are controlled by
important parameters such as speed and temperature, shape and surface conditions.
Surface conditions require special attention where roughness is an inherent characteristic.
Roughness usually increases the friction resistance and the heat transfer coefficient for a
same Reynolds number, relative to the smooth surfaces. In fact, the roughness produces
higher values for the friction factor and Stanton number, which result in speed and
temperature deficits at the relative long distance of the surface when compared to the smooth
surface.

For Re,>65 we have what is called the regime for a completely rough surface or even
a completely rough flow Pimenta et al. (1975). A completely rough regime is what is
considered in this analysis and, for all intents and purposes, we have Re=70. It can be shown
that the friction coefficient, for a completely rough regime, can be obtained by the following
expression, where the correction factor for the pressure gradient effect is introduced,

according to the empirical proposal of Kays and Crawford (1983):
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Ccf 0.168
(T)rug = 2
( 32.1x )
In T
Re, 5k

The Stanton number, by definition, is obtained from the expression below:

(48)

B
(1+%)

Sty = - 49
* " Pr.Re, (49)
For laminar regime
df. |Re
(d_n)o«/Tx
Nu, = (50)

For any situation, laminar or turbulent regime, for constant surface temperature and

constant free-flow velocity, the Stanton number can be expressed in the form:
St =CRe, ™ (51)

In turbulent regime, zero pressure gradient, smooth surface, Kays and Crawford
present the following equation, which fits excellent with experimental results for 0.5<Pr<1.0
and 5.10%<Rex<5.10%; C = 0.0287Pr%# and n=0.20.

Introducing the proposed correction for inclined surfaces:

0.0287Pr~%*Re, 020
Strurbexp = B (52)
1+

Figure 7 shows the theoretical-experimental comparison for Stanton number in laminar
regime, for $=1.0. The results are quite satisfactory for Prandtl numbers close to the unit, and
deviate to high values of the Prandtl number, as expected.
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Figure 7

Stanton number (St) for laminar regime as a function of Reynolds number
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Figure 8 presents theoretical and experimental data for turbulent regime, on smooth
and rough surfaces, for the number of Pr=1.0. As expected, heat transfer on rough surfaces
outweighs heat transfer to smooth surfaces, for the same Reynolds number.

The theoretical expression for determination of Stanton's number is given by, following

application of empirical modification suggested by Kays and Crawford (1983):

cf
( /Z)rug
( (Cf/z)mg (13.2Pr — 10.16) + Prt> (1.0 + g)

(53)

Stryg =

In a completely rough flow, the molecular thermal conductivity remains as a significant
variable, influence that can be established through the number of turbulent Prandtl, Pr;. The
turbulent Prandtl number can be considered, for gases, to be 0.9, which in fact represents an

average value.
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Figure 8

Theoretical-experimental comparisons for Stanton number (St) in turbulent regime, as a
function of Reynolds number for smooth and rough surfaces
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The equation for determination of experimental Stanton number, with the correction for
the pressure gradient, is given by:

cf

Stxp = Zrus (54)
Cf
(T)rug [))

Stk = Rek_O'ZPT_OAA (55)

Where:

St is the function of the roughness of the surface.

Figure 8 show that, for accelerated flow, the values approximate the result obtained
for laminar flow, for smooth and rough surfaces. This effect is called laminarization of the
boundary layer Kays et all. (1969) and demonstrate that the acceleration effect tends to cause

a "retransmission" of the turbulent boundary layer to a pure laminar boundary layer. This is
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an effect associated with decompression of the boundary layer, where the roughness is
immersed in the laminar sublayer. Table 2 shows the effect of the tendency for laminar flow

in the numerical determination of the Stanton number.

Table 2
Stanton number (St) for turbulent regime in smooth and rough surfaces
B =0.0 B =10
R.(x) Equation (48) Equation (50) Equation (48) Equation (50)
Smooth Rough Smooth Rough

1.01E5 2.864E-3 4.721E-3 2.387E-3 2.977E-3
2.01E5 2.496E-3 3.988E-3 2.080E-3 2.804E-3
4.01E5 2174E-3 3.412E-3 1.812E-3 2.398E-3
6.01E5 2.005E-3 3.132E-3 1.671E-3 2.199E-3
8.01E5 1.9893E-3 2.953E-3 1.577E-3 2.073E-3
1.00E6 1.810E-3 2.824E-3 1.509E-3 1.983E-3
1.20E6 1.746E-3 2.726E-3 1.455E-3 1.913E-3
1.40E6 1.693E-3 2.646E-3 1.411E-3 1.857E-3
1.60E6 1.648E-3 2.580E-3 1.373E-3 1.810E-3
1.80E6 1.610E-3 2.524E-3 1.341E-3 1.770E-3
2.00E6 1.576E-3 2.475E-3 1.314E-3 1.736E-3

Source: The authors.

Experimental results, with correction factor, obtained by Pimenta et al. (1975) and
Kays and Crawford (1983) were used for comparison, Equation (50). The data were taken
from the table of Pimenta (1975), where U=130.63 ft/s and without surface perspiration effect.
The value of Ks is equal to 1.0 mm for all purposes in this analysis.

It is important to emphasize that there is experimental evidence that the shape factor
tends to 1.47, for smooth surface and highly accelerated flows in completely turbulent flow.
This shows that despite the tendency to the laminar regime, the flow remains turbulent
because the value of the form factor for highly accelerated laminar flow is approximately 2.2,
as presented through the results obtained in this work, Figures 9 and 10.

There is theoretical and experimental evidence that the detachment of the turbulent

boundary layer is delayed in relation to the laminar boundary layer detachment.
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Shape factors (H,,) for laminar and turbulent regimes on smooth surfaces

Smooth Surface

Laminar

*

B H12Laminar H12Turb
-0.200 * 4.02915 2.3333
-0.195 3.6414 2.1998
-0.190 3.4806 2.0629
-0.180 3.2966 1.8719
-0.170 3.1782 1.7493
-0.160 3.0905 1.6673
-0.150 3.0208 1.6104
-0.140 2.9632 1.5692
-0.120 2.8717 1.5120
-0.100 2.8010 1.4667
-0.050 2.6756 1.3532

0.000 2.5909 1.2943

0.050 2.5288 1.2978

0.100 2.4807 1.3133

0.200 2.4098 1.3566

0.300 2.3616 1.383

0.400 2.3251 1.4025

0.500 2.2963 1.4348

0.600 2.2735 1.4380

0.800 2.2398 1.4495

1.000 2.2157 1.4627

Turbulent

*3 =-0.19883768

Figure 10
6
(\] 1
o
~—
— 5 ]
s
]
N ]
F
I 4 —
1
L —
O
i
o ., |
(3]
LL
. |
Q.
C 2
N -
(7p) .
! |
(0]

!
B

0.8

Source: The authors.

\

Expanded Science: Innovation and Research
HEAT TRANSFER AND FLUID DYNAMICS ON INCLINED SMOOTH AND ROUGH SURFACES BY THE
APPLICATION OF THE SIMILARITY AND INTEGRAL METHODS



The numerical results presented through Figure 9 demonstrate that in fact this occurs.

Note, Figure 10, that the smallest value for the parameter that establishes the pressure

gradient is equal to § = —0.19883768 = —0.200, for laminar regime.

Figure 11

Dimensionless viscous surface tension (f'") for laminar and turbulent regimes
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In fact, as the results of Figure 11 show, the dimensionless viscous stress passes

through a local maximum point, close to f = —0.2, decreases asymptotically to approximately

B = —0.24, where it becomes equal to zero, for turbulent regime on smooth surface.

3 CONCLUSIONS

The analysis, for flow and heat transfer in laminar regime and turbulent regime, on

smooth and rough inclined surface, includes theoretical aspects, experimental results and

empirical correlations. An extensive review of procedures associated to the boundary layer

similarity method, used for solution of nonlinear equations systems, was presented.
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In a turbulent regime, through the integral analysis of the momentum, the equations
were first obtained for null pressure gradient and extended through a correction factor, for a
wide range of the pressure gradient parameter.

The main result of the present work is associated with the fact that it is possible to
obtain empirical solutions compatible with analytical solutions for laminar and turbulent flow
in the whole range of values for the pressure parameter, 8, considered in the analysis. This
result allows us to use reliable solutions for numerous practical problems without having to
solve the system of nonlinear equations, which is the main source of difficulties in the analysis
performed.

As a motivation for the development of future works, it can be stated that problems
associated to the determination of micrometeorological parameters, through the Monin-
Obukov similarity theory, in inclined rugged surface, can be solved in an approximate way

through the application of the analysis performed in this work.
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