SEVEN

publicacoes académicas

OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN
CODE SECURITY IN LARGE LANGUAGE MODEL PIPELINES: COMPARATIVE
ANALYSIS OF INFERENCE COSTS

OTIMIZAGAO DA EFICIENCIA COMPUTACIONAL E SEGURANGA DE CODIGO
POR PROJETO EM PIPELINES DE MODELOS DE LINGUAGEM DE GRANDE
PORTE: ANALISE COMPARATIVA DE CUSTOS DE INFERENCIA

O?TIMIZACI()N DE LA EFICIENCIA COMPUTACIONAL Y SEGURIDAD DEL

CODIGO POR DI§ENO EN GRANDES CANALIZACIONES DE MODELOS DE

LENGUAJE: ANALISIS COMPARATIVO DE LOS COSTOS DE INFERENCIA
d | https://doi.org/10.56238/sevened2025.036-117

Tagleorge Silveira!, Pedro Pinheiro?, Hélder Rodrigo Pinto3, Salviano Pinto Soares?,
José Baptista®

ABSTRACT

Large Language Models (LLMs) have revolutionized software engineering by generating
code rapidly and accurately across a wide range of programming tasks. However, the growing
reliance on these models raises concerns regarding their energy consumption, runtime
overhead, and the efficiency of achieving successful, security-by-design, and maintainable
code. This article presents an analytical comparison of several leading LLMs—such as
OpenAl's GPT series, Anthropic’s Claude, Meta’s Llama, and Google’s Gemini—by
evaluating their success rates in producing secure and optimized code, the number of
prompts required for successful output, and the corresponding computational and energy
costs. The findings emphasize strategies to balance accuracy, performance, and
sustainability in LLM-assisted programming.

Keywords: LLMs. Energy Efficiency. Cybersecurity. Security-by-design. Optimization.

RESUMO
Os Grandes Modelos de Linguagem (LLMs) revolucionaram a engenharia de software ao
gerar codigo de forma rapida e precisa em uma ampla gama de tarefas de programacao. No
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entanto, a crescente dependéncia desses modelos levanta preocupagdes quanto ao seu
consumo de energia, sobrecarga de tempo de execugéo e a eficiéncia na obtengdo de um
cédigo bem-sucedido, seguro desde a concepcado e de facil manutengado. Este artigo
apresenta uma comparagao analitica de varios LLMs lideres — como a série GPT da
OpenAl, Claude da Anthropic, Llama da Meta e Gemini do Google — avaliando as suas
taxas de sucesso na produgdo de codigo seguro e otimizado, o numero de prompts
necessarios para uma saida bem-sucedida e os custos computacionais e energéticos
correspondentes. As conclusdes enfatizam estratégias para equilibrar precisao,
desempenho e sustentabilidade na programacao assistida por LLM.

Palavras-chave: LLMs. Eficiéncia Energética. Ciberseguranga. Seguranga por Design.
Otimizacéo.

RESUMEN

Los Grandes Modelos de Lenguaje (LLM) han revolucionado la ingenieria de software al
generar codigo de forma rapida y precisa en una amplia gama de tareas de programacion.
Sin embargo, la creciente dependencia de estos modelos genera inquietudes respecto de su
consumo de energia, la sobrecarga en tiempo de ejecucién y la eficiencia para lograr un
codigo exitoso, seguro por disefio y mantenible. Este articulo presenta una comparacion
analitica de varios LLM lideres, como la serie GPT de OpenAl, Claude de Anthropic, Llama
de Meta y Gemini de Google, evaluando sus tasas de éxito en la produccién de cédigo
seguro y optimizado, el numero de indicaciones necesarias para obtener un resultado
satisfactorio y los correspondientes costes computacionales y energéticos. Los resultados
ponen de relieve las estrategias para equilibrar la precision, el rendimiento y la sostenibilidad
en la programacion asistida por LLM.

Palabras clave: Lims. Eficiencia Energética. Ciberseguridad. Seguridad por Disefio.
Optimizacion.
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1 INTRODUCTION

The need to reduce costs and improve efficiency is a necessity of modern times. Code
security and efficiency is critical for the best usage of required systems and functionalities
that require less runtime and less energy expenditure. The focus of this analysis is conducted
mainly on the parameters mentioned above, in order to determine if both of them can be
lowered without sacrificing models resourcefulness and quality, therefore making sure that
the desired output of a correct, error free code and the development of secure-by-design
systems, can be achieved without having many losses in time, energy, code efficiency, and
security. The effective need of having the safety and efficiency of the code generated by an
LLM are the priority in this matter, however, the analysis of the cost-benefit ratio is also
important for large scale programs that work with large data sets, making sure that no error
occurs, and if it does, that the code refactoring is done appropriately and quickly, saving
energy and time.

The motivation for the realization of this work is centered around the need for better
management of good coding practices, as well as the need to analyze the resulting costs of
the used energy and time spent working on providing possible code-refactoring solutions.
This theme is relevant today as the demand for reliable, emission-free energy is increasingly
urgent. Without one, the need to reduce costs and augment efficiency is critical for the well
management of society nowadays. Therefore, the analysis of the objectives mentioned
above, as well as the possible comparison between some LLMs, is highly needed to
understand and make a full comprehensive use of the capabilities of the tools at hand in order

to achieve the best possible result with low-cost performance (Bhatt, 2025).

2 METHOD

In this investigation, an initial analysis of recent and relevant literature was conducted,
which sought both to identify the articles to be studied in technology and the usage of Al for
the best possible code output with as few errors as possible, whilst maintaining energy
efficiency and low runtime overhead. The process of evaluation and interpretation of the
reflections placed on the selected biblioFigureic material was made over selected articles that
made comparisons between different LLM models, as well as the study of spent energy

resources when refactoring or generating specific code.
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() Efficient, faster coding to increase success rates

The need to enhance and improve the coding methods and speed has always been a
much regarded need in tech. Nowadays, LLMs combined with agentic Als can reduce time
strains and make apps, programs and websites in a matter of minutes, in comparison to a
human developer. However, since the models are not perfect, the code can contain some
noticeable errors that a good developer would not make, even if it takes them longer to
develop the software in question. Another impactful parameter when generating good and
efficient code is a well written prompt that the model will be able to process with a more
degree of precision, without the need to deviate from the objective at hand. Different prompt
strategies may be implemented when using LLMs to determine the success rate that one can
output, as an example, the comparison of the success rates of six different prompt strategies
was made on GPT-4, as well as other LLMs, showing the difference in the number of
attempts, as well as the change in the degree of difficulty of the tasks themselves (Hou, 2024).

Another control parameter that should be considered is the self-planning code
generation that we can implement using LLMs. The self-planning phase can be done by
matching the intent with the plan therefore not only giving the initial prompt of what the user
wants the LLM to do but also indicating step by step specifically what the LLM needs to do
therefore the output should be a lot cleaner and a lot more accurate than if it was only with
the initial prompt without any guidance (Jiang, 2023; Ye, 2025). Another technique involving
a Large language model Aware selection approach for In-context-Learning based code
generation named LAIL, is also to be considered for the remarkable improvements in
generating desired programs, outperforming state-of-the-art baselines by considerable
amount (Li, 2023). This new approach uses other LLMs To select a positive or negative
example for requirement, this means that other LLMs are responsible for the ultimate
outcome of LAIL.

({1)) Measuring energy and emissions in ML

The environmental costs that training an LLM have are significant. Dozens of hundreds
of tons of CO2 are just a simple fact of the cost of training and LLM, not to mention the
expenditure and energy. An example of that is the LLM Bloom which generated 24,7 and 50,5
tons of CO2 (Luccioni, 2022; Jiang, 2024; Singh, 2024). The training costs of LLMs are indeed
significant, however inference, the process of responding to user queries is where costs
ultimately increase exponentially and the environment is more affected. One query on

ChatGPT is estimated to cause an emission of 4 grams of CO2 more than 20 times more
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than one web search. The reduction of carbon footprint when training/using LLMs has been
largely overlooked, therefore the need to make responsible advancements to reduce carbon
emissions prioritizing the environment without decreasing efficiency when using LLMs is a
needed directive for the future (Wu, 2025; Ding, 2024; Ozcan, 2025).

To show an initial example of a small sample of models, in terms of energy per API call
that the models represented in Figure 1. This shows us that there is a certain amount of
energy that is used whenever we prompt the model to obtain a relative output. We can also
infer from this that the largest models use the most amount of energy, whereas the smaller

models use the least amount.

Figure 1
Energy per API Call Model Comparison
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As can be observed on Figure 2 again, the largest models consume the highest
amount of energy per API call and have the largest response time, whereas the low parameter
models are the opposite. If the objective is to be truthful to energy efficient models, then we
cannot use LLMs. However compressed LLMs can provide results with near equal success
rate in comparison to uncompressed LLMs while spending less energy per API call and taking

less time.
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Figure 2
Energy vs Latency Model Comparison
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As can be seen, Figure 3, the prompt success rate doesn't differ much from model to

model, only on more complex prompts can relevantly differences from model to model.

Figure 3

Prompt Success Rate Model Comparison
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Prompt success rate is considered the capability of an LLM to complete the task given
by the used in a single prompt with no additional guidelines/instructions on any other prompts.
However, in Figure 4 it can be observed, in a much more comprehensive manner, that latency

differs from models with more parameters in comparison to models with less parameters.

Figure 4

Average Latency Model Comparison
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(1) Model selection & architecture choices

Model selection and Architectural choices are important for achieving a more accurate
LLM. Studies indicate that 7B and 13B models can achieve high accuracy rates despite
having lower parameters and in token usage. The more tokens are used in inference
processes the more energy will be consumed for the expected output. Not only this but there's
also a need to reduce the latency of said inference. The idea is that the usage of less tokens
per second over a large share batch size as well as over time becomes less and less,
therefore reducing the associated energy costs and carbon footprint (Bian, 2025; Yuan,
2025).

There's also the possibility to use a mixture of experts’ architecture for better and faster
reasoning from LLMs. This consists of a router that redirects tokens to the experts,
specialized sub-networks, that handle different parts of the problem, weighing them to give a
more accurate and precise output (Yuan, 2025). This approach is one of the most energy
saving options that we must consider, since it disperses energy for more selected and unique
parts of processing and comprehension whereas beforehand one would need to access an
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entire LLM for just a simple query. With this method only parts of an LLM need to be accessed
to generate a viable and accurate response. The more complex the mending process, more
parts will need to be accessed in order to be accurate and therefore achieve a proper output.

The consideration of smaller language models to achieve low latency while
maintaining the same level of accuracy as larger models is noticeable, inference and token
utilization are also kept low therefore the need to use less memory is also noticeable. For
problem specific questions/objectives the 7B parameters LLMs are an option to be
considered, they can even be used to train larger LLMs with 70B or 150B parameters. This
takes into consideration the rate of accuracy and success when responding to user inputs.
However, the degree of accuracy and detail on a response needs to be followed with
reduction and energy costs.

(1v) Runtime Optimizations

Runtime optimizations are important to consider reducing time spent and energy spent
with reasoning. Quantization is an important technique to consider for improving model
memory footprint and keeping model accuracy. Post training quantization reduces inference
compute by up to 3x-4x, with no noticeable performance loss. The knowledge distillation
technique relies on smaller models teaching larger ones, therefore reducing costs associated
with processing information and reducing runtime overhead, as well as cutting costs by 70%
(Xiao, 2023; Ganesh, 2024).

The early exit technique allows the reduction of execution time, therefore being an
interesting aspect to consider when wanting to lower energy costs. The technique consists in
reducing the time of reasoning by verifying the threshold of said reasoning and when the
threshold achieves a desired percentage (40-70%), the reasoning will stop, and an answer
will be given. This method benefits simpler, less complex input prompts from the user,
reducing overall run time overhead and lowering energy costs by 23-50% but also lowering
response time (llager, 2025).

(V) Hardware & Infrastructure Choices

Hardware selection is a fundamental prospect that needs to be considered when
establishing new LLM training routines. GPUs are the standard for LLM inference, however
special accelerators such as TPUs, AWS Inferentia, and other emerging Al specific Asics, can
also achieve a high energy efficiency per token processed. The need to develop new
customized accelerators has been a modern advancement made by companies like Google,

to improve speed and energetic efficiency on LLMs (Li, 2024; Chowdhery, 2022). Tensor
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model parallelism is another method to improve overall processing on the LLM by creating
different partitions of the weights and then concatenating them to achieve the desired output.
This is done so that there is less strain on memory. The most commonly used format is the
Megatron LM, which is used on LLM's with 50-70b parameters, however, the latency
increases with this technique, however the precision and scalability increase as well.
(Narayanan, 2021).

An important note to take into account is that energy efficiency per token is referring
to long-term usage since we are discussing LLMs that is the main crucial point that we need
to take into account when we speak about energy efficiency we need to consider a long-term
options instead of short-term ones, reliability needs to be achieved, for that to consideration
of accuracy and precision as the core and primary motivators for such research needs to be
invoked. After that, the need for energy efficient solutions must be pursued. the next Figures
will show the difference in energy as well as cost efficiency between certain GPUs and TPUs,
as well as inference latency comparison, so that inadequate study of such values can be
done.

In Figure 5 shows the difference from several GPUs and TPUs in compute capacity.
This is meant to illuminate regarding the Tensor Processing Units which ultimately cost more
energy to run, as well as working with a different architecture than a GPU. The biggest bars

in this Figure are of the GPUs.

Figure 5

Compute Capacity Comparison Across Accelerators
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The Figure 6 shows the difference between GPUs and TPUs regarding Energy
Efficiency. Due to the specific design of a TPU, the usage of energy is more controlled since
only some parts of the architecture are chosen to run the models themselves, this makes it a
much more energetically efficient strategy to reduce the carbon footprint associated with
LLMs

Figure 6

Energy Efficiency of GPUs and TPUs
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In Figure 7 is meant to show the inference to latency comparison between GPUs and
TPUs. It can be observed that since the customized architecture of a TPU is more energy
friendly the latency will therefore increase. The division of weights for this architecture is the
main concern when it comes to latency issues, for the concatenation of the weights needs to
be done so that the overall output can be accurate and precise. On the other hand the GPUs

have less latency and more power expenditure.

Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE
LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS



\V4

Figure 7
Inference Latency Comparison
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(V1) Secure and Clean Code Practices to Reduce Overhead

There's now more than ever an urgent need to write good, polished, clean and secure
code, not only to avoid critical errors but also to maintain good security measures on
websites, but also for the development of security-by-design systems, as well as to avoid
possible bugs/errors in the future of a critical piece of software. Code reusability as well as
revision and maintenance, are all important and for that, code needs to be written in a manner
that generally can be well perceived by anyone that works with writing or reading code
(Hunter-Zinck, 2021; Digkas, 2020).

Azure guidelines provide a set of best practices to build secure, scalable, clean and
maintainable as well as cost-efficient applications. These guidelines are important because
they are also applied in Al pipelines as well as LLMs. The figures below are meant to illustrate
the difference between good and bad coding.

The Figure 8 shows code that loads and sends entire logs with a massive token usage,
allowing for the user to input information that can be out of context or just not need it therefore
making latency time higher as well as energy costs. Figure 9 shows a clean code that
determines the length of the input therefore giving it a smaller token window lowering energy

cost and allowing for a faster runtime.
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Figure 8
Bad coding example #1

prompt =

Tuser_input}

System Logs:

fopen( J.read()} # HUGE FILE LOADED EVERY REQUEST

Debug Info:

{debug_info}

Please answer the guestion.

response = call 1llm(prompt)

Source: Produced by the author, 2025.

Figure 9
Good Coding Example #1

prompt

response = call 1lm{prompt)

Source: Produced by the author, 2025.

In Figure 10 shows code that just attaches the results meaning every single request
made from a user into an LLM, whereas Figure 11 routes input query from the user adding a
length to the input and then rerouting it to a small LLM if it meets that criteria or to a large
LLM if it meets other criteria this allows for faster queries so lower latency reducing overhead

runtime from 50 to 80%.
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Figure 10
Bad Coding Example #2

# Ewvery request uses GPT-4-class model regardless of complexity

result = 11lm_large.generate{user_guery)

Source: Produced by the author, 2025.

Figure 11
Good Coding Example #4

{query):
len{query) <
11m_small.generate{query)

1lm large.generate{query)

result = route_request{user_query)

Source: Produced by the author, 2025.

(Vi) Case Studies & Worked Examples
Real world deployments of LLMs, like Llama-3 series models, provide estimates of
inference energy per 1k tokens. Meta’s Llama-3 Shows that a 70B-parameter model
consumes several times more energy than a fine-tuned 8B model, while the smaller one still
performs adequately for many domain-specific applications. Another example, is a noticeable
energy reduction of almost 100 Joules per API call is OpenAl's GPT-40 Mini, compared with
GPT-40 (OpenAl, 2024; Meta Al, 2024).

3 CONCLUSION

The initial analysis presented throughout this chapter demonstrates that reducing
energy consumption and runtime overhead in LLM-assisted software development is both
technically feasible and essential for sustainable computational practices. Modern Large
Language Models, such as GPT-40, Claude 3, Llama-3, and Gemini, offer extraordinary
capabilities for generating secure, clean, and efficient code, yet their performance must be
weighed against the significant environmental and computational costs associated with large-
scale inference. As shown through recent scientific studies, smaller or optimized models (7B—

13B parameters), quantized architectures, mixture-of-experts routing, early-exit reasoning,
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and hardware-aware deployment strategies can collectively reduce energy consumption by
50-80% without compromising accuracy or security.

The review also reinforces that prompt engineering, self-planning strategies, and LLM-
aware selection frameworks such as LAIL significantly increase code-generation success
rates while minimizing the number of model calls required—directly reducing energy
expenditure. Likewise, secure and clean code practices, backed by Azure’s engineering
guidelines, show that well-structured, modular, and token-efficient code pipelines contribute
meaningfully to reducing computational overhead. In parallel, empirical case studies confirm
that the shift from monolithic 70B-parameter systems to distilled or specialized smaller
models results in dramatic gains in efficiency, lower emissions, and improved maintainability,
especially when caching, batching, and routing mechanisms are included.

Ultimately, this chapter highlights that the path toward sustainable Al-assisted
programming relies on a holistic approach: combining model-level optimizations, careful
choice of architecture, infrastructure-aware deployment, low-overhead prompt strategies, and
strict adherence to secure coding principles, such as security-by-design software
development. By integrating these practices, developers can aim to achieve high-quality,
error-free code while simultaneously lowering carbon footprints, operational costs,
development of security-by-design systems and avoiding runtime inefficiencies. As the
technology continues to evolve, responsible model usage—focused on accuracy, energy
efficiency, security and long-term sustainability—must become a central pillar of modern

software engineering.
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