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ABSTRACT 
Large Language Models (LLMs) have revolutionized software engineering by generating 
code rapidly and accurately across a wide range of programming tasks. However, the growing 
reliance on these models raises concerns regarding their energy consumption, runtime 
overhead, and the efficiency of achieving successful, security-by-design, and maintainable 
code. This article presents an analytical comparison of several leading LLMs—such as 
OpenAI’s GPT series, Anthropic’s Claude, Meta’s Llama, and Google’s Gemini—by 
evaluating their success rates in producing secure and optimized code, the number of 
prompts required for successful output, and the corresponding computational and energy 
costs. The findings emphasize strategies to balance accuracy, performance, and 
sustainability in LLM-assisted programming. 
 
Keywords: LLMs. Energy Efficiency. Cybersecurity. Security-by-design. Optimization.      
 
RESUMO 
Os Grandes Modelos de Linguagem (LLMs) revolucionaram a engenharia de software ao 
gerar código de forma rápida e precisa em uma ampla gama de tarefas de programação. No 
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entanto, a crescente dependência desses modelos levanta preocupações quanto ao seu 
consumo de energia, sobrecarga de tempo de execução e à eficiência na obtenção de um 
código bem-sucedido, seguro desde a concepção e de fácil manutenção. Este artigo 
apresenta uma comparação analítica de vários LLMs líderes — como a série GPT da 
OpenAI, Claude da Anthropic, Llama da Meta e Gemini do Google — avaliando as suas 
taxas de sucesso na produção de código seguro e otimizado, o número de prompts 
necessários para uma saída bem-sucedida e os custos computacionais e energéticos 
correspondentes. As conclusões enfatizam estratégias para equilibrar precisão, 
desempenho e sustentabilidade na programação assistida por LLM. 
 
Palavras-chave: LLMs. Eficiência Energética. Cibersegurança. Segurança por Design. 
Otimização.      
 
RESUMEN 
Los Grandes Modelos de Lenguaje (LLM) han revolucionado la ingeniería de software al 
generar código de forma rápida y precisa en una amplia gama de tareas de programación. 
Sin embargo, la creciente dependencia de estos modelos genera inquietudes respecto de su 
consumo de energía, la sobrecarga en tiempo de ejecución y la eficiencia para lograr un 
código exitoso, seguro por diseño y mantenible. Este artículo presenta una comparación 
analítica de varios LLM líderes, como la serie GPT de OpenAI, Claude de Anthropic, Llama 
de Meta y Gemini de Google, evaluando sus tasas de éxito en la producción de código 
seguro y optimizado, el número de indicaciones necesarias para obtener un resultado 
satisfactorio y los correspondientes costes computacionales y energéticos. Los resultados 
ponen de relieve las estrategias para equilibrar la precisión, el rendimiento y la sostenibilidad 
en la programación asistida por LLM. 
 
Palabras clave: Llms. Eficiencia Energética. Ciberseguridad. Seguridad por Diseño. 
Optimización.
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1 INTRODUCTION 

The need to reduce costs and improve efficiency is a necessity of modern times. Code 

security and efficiency is critical for the best usage of required systems and functionalities 

that require less runtime and less energy expenditure. The focus of this analysis is conducted 

mainly on the parameters mentioned above, in order to determine if both of them can be 

lowered without sacrificing models resourcefulness and quality, therefore making sure that 

the desired output of a correct, error free code and the development of secure-by-design 

systems, can be achieved without having many losses in time, energy, code efficiency, and 

security. The effective need of having the safety and efficiency of the code generated by an 

LLM are the priority in this matter, however, the analysis of the cost-benefit ratio is also 

important for large scale programs that work with large data sets, making sure that no error 

occurs, and if it does, that the code refactoring is done appropriately and quickly, saving 

energy and time. 

 The motivation for the realization of this work is centered around the need for better 

management of good coding practices, as well as the need to analyze the resulting costs of 

the used energy and time spent working on providing possible code-refactoring solutions. 

This theme is relevant today as the demand for reliable, emission-free energy is increasingly 

urgent.  Without one, the need to reduce costs and augment efficiency is critical for the well 

management of society nowadays. Therefore, the analysis of the objectives mentioned 

above, as well as the possible comparison between some LLMs, is highly needed to 

understand and make a full comprehensive use of the capabilities of the tools at hand in order 

to achieve the best possible result with low-cost performance (Bhatt, 2025). 

 

2 METHOD 

In this investigation, an initial analysis of recent and relevant literature was conducted, 

which sought both to identify the articles to be studied in technology and the usage of AI for 

the best possible code output with as few errors as possible, whilst maintaining energy 

efficiency and low runtime overhead. The process of evaluation and interpretation of the 

reflections placed on the selected biblioFigureic material was made over selected articles that 

made comparisons between different LLM models, as well as the study of spent energy 

resources when refactoring or generating specific code. 

 



 

 Expanded Science: Innovation and Research 
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE 

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS 

(I) Efficient, faster coding to increase success rates 

The need to enhance and improve the coding methods and speed has always been a 

much regarded need in tech. Nowadays, LLMs combined with agentic AIs can reduce time 

strains and make apps, programs and websites in a matter of minutes, in comparison to a 

human developer. However, since the models are not perfect, the code can contain some 

noticeable errors that a good developer would not make, even if it takes them longer to 

develop the software in question. Another impactful parameter when generating good and 

efficient code is a well written prompt that the model will be able to process with a more 

degree of precision, without the need to deviate from the objective at hand. Different prompt 

strategies may be implemented when using LLMs to determine the success rate that one can 

output, as an example, the comparison of the success rates of six different prompt strategies 

was made on GPT-4, as well as other LLMs, showing the difference in the number of 

attempts, as well as the change in the degree of difficulty of the tasks themselves (Hou, 2024).  

Another control parameter that should be considered is the self-planning code 

generation that we can implement using LLMs. The self-planning phase can be done by 

matching the intent with the plan therefore not only giving the initial prompt of what the user 

wants the LLM to do but also indicating step by step specifically what the LLM needs to do 

therefore the output should be a lot cleaner and a lot more accurate than if it was only with 

the initial prompt without any guidance (Jiang, 2023; Ye, 2025). Another technique involving 

a Large language model Aware selection approach for In-context-Learning based code 

generation named LAIL, is also to be considered for the remarkable improvements in 

generating desired programs, outperforming state-of-the-art baselines by considerable 

amount (Li, 2023). This new approach uses other LLMs To select a positive or negative 

example for requirement, this means that other LLMs are responsible for the ultimate 

outcome of LAIL. 

(II) Measuring energy and emissions in ML 

The environmental costs that training an LLM have are significant. Dozens of hundreds 

of tons of CO2 are just a simple fact of the cost of training and LLM, not to mention the 

expenditure and energy. An example of that is the LLM Bloom which generated 24,7 and 50,5 

tons of CO2 (Luccioni, 2022; Jiang, 2024; Singh, 2024). The training costs of LLMs are indeed 

significant, however inference, the process of responding to user queries is where costs 

ultimately increase exponentially and the environment is more affected. One query on 

ChatGPT is estimated to cause an emission of 4 grams of CO2 more than 20 times more 
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than one web search. The reduction of carbon footprint when training/using LLMs has been 

largely overlooked, therefore the need to make responsible advancements to reduce carbon 

emissions prioritizing the environment without decreasing efficiency when using LLMs is a 

needed directive for the future (Wu, 2025; Ding, 2024; Ozcan, 2025). 

To show an initial example of a small sample of models, in terms of energy per API call 

that the models represented in Figure 1. This shows us that there is a certain amount of 

energy that is used whenever we prompt the model to obtain a relative output. We can also 

infer from this that the largest models use the most amount of energy, whereas the smaller 

models use the least amount. 

  

Figure 1 

Energy per API Call Model Comparison  

 

Source: Produced by the author, 2025. 

 

As can be observed on Figure 2 again, the largest models consume the highest 

amount of energy per API call and have the largest response time, whereas the low parameter 

models are the opposite. If the objective is to be truthful to energy efficient models, then we 

cannot use LLMs. However compressed LLMs can provide results with near equal success 

rate in comparison to uncompressed LLMs while spending less energy per API call and taking 

less time.  
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Figure 2 

Energy vs Latency Model Comparison 

 

Source: Produced by the author, 2025. 

 

As can be seen, Figure 3, the prompt success rate doesn't differ much from model to 

model, only on more complex prompts can relevantly differences from model to model. 

 

Figure 3 

Prompt Success Rate Model Comparison 

 

Source: Produced by the author, 2025. 
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Prompt success rate is considered the capability of an LLM to complete the task given 

by the used in a single prompt with no additional guidelines/instructions on any other prompts. 

However, in Figure 4 it can be observed, in a much more comprehensive manner, that latency 

differs from models with more parameters in comparison to models with less parameters. 

 

Figure 4 

Average Latency Model Comparison 

 

Source: Produced by the author, 2025. 

 

(III) Model selection & architecture choices 

Model selection and Architectural choices are important for achieving a more accurate 

LLM. Studies indicate that 7B and 13B models can achieve high accuracy rates despite 

having lower parameters and in token usage. The more tokens are used in inference 

processes the more energy will be consumed for the expected output. Not only this but there's 

also a need to reduce the latency of said inference. The idea is that the usage of less tokens 

per second over a large share batch size as well as over time becomes less and less, 

therefore reducing the associated energy costs and carbon footprint (Bian, 2025; Yuan, 

2025).  

There's also the possibility to use a mixture of experts’ architecture for better and faster 

reasoning from LLMs. This consists of a router that redirects tokens to the experts, 

specialized sub-networks, that handle different parts of the problem, weighing them to give a 

more accurate and precise output (Yuan, 2025). This approach is one of the most energy 

saving options that we must consider, since it disperses energy for more selected and unique 

parts of processing and comprehension whereas beforehand one would need to access an 
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entire LLM for just a simple query. With this method only parts of an LLM need to be accessed 

to generate a viable and accurate response. The more complex the mending process, more 

parts will need to be accessed in order to be accurate and therefore achieve a proper output.  

The consideration of smaller language models to achieve low latency while 

maintaining the same level of accuracy as larger models is noticeable, inference and token 

utilization are also kept low therefore the need to use less memory is also noticeable. For 

problem specific questions/objectives the 7B parameters LLMs are an option to be 

considered, they can even be used to train larger LLMs with 70B or 150B parameters. This 

takes into consideration the rate of accuracy and success when responding to user inputs. 

However, the degree of accuracy and detail on a response needs to be followed with 

reduction and energy costs.  

(IV) Runtime Optimizations 

Runtime optimizations are important to consider reducing time spent and energy spent 

with reasoning. Quantization is an important technique to consider for improving model 

memory footprint and keeping model accuracy. Post training quantization reduces inference 

compute by up to 3x-4x, with no noticeable performance loss. The knowledge distillation 

technique relies on smaller models teaching larger ones, therefore reducing costs associated 

with processing information and reducing runtime overhead, as well as cutting costs by 70% 

(Xiao, 2023; Ganesh, 2024).  

The early exit technique allows the reduction of execution time, therefore being an 

interesting aspect to consider when wanting to lower energy costs. The technique consists in 

reducing the time of reasoning by verifying the threshold of said reasoning and when the 

threshold achieves a desired percentage (40-70%), the reasoning will stop, and an answer 

will be given. This method benefits simpler, less complex input prompts from the user, 

reducing overall run time overhead and lowering energy costs by 23-50% but also lowering 

response time (Ilager, 2025).  

(V) Hardware & Infrastructure Choices 

Hardware selection is a fundamental prospect that needs to be considered when 

establishing new LLM training routines. GPUs are the standard for LLM inference, however 

special accelerators such as TPUs, AWS Inferentia, and other emerging AI specific Asics, can 

also achieve a high energy efficiency per token processed. The need to develop new 

customized accelerators has been a modern advancement made by companies like Google, 

to improve speed and energetic efficiency on LLMs (Li, 2024; Chowdhery, 2022). Tensor 
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model parallelism is another method to improve overall processing on the LLM by creating 

different partitions of the weights and then concatenating them to achieve the desired output. 

This is done so that there is less strain on memory. The most commonly used format is the 

Megatron LM, which is used on LLM's with 50-70b parameters, however, the latency 

increases with this technique, however the precision and scalability increase as well. 

(Narayanan, 2021).  

An important note to take into account is that energy efficiency per token is referring 

to long-term usage since we are discussing LLMs that is the main crucial point that we need 

to take into account when we speak about energy efficiency we need to consider a long-term 

options instead of short-term ones, reliability needs to be achieved, for that to consideration 

of accuracy and precision as the core and primary motivators for such research needs to be 

invoked. After that, the need for energy efficient solutions must be pursued. the next Figures 

will show the difference in energy as well as cost efficiency between certain GPUs and TPUs, 

as well as inference latency comparison, so that inadequate study of such values can be 

done. 

In Figure 5 shows the difference from several GPUs and TPUs in compute capacity. 

This is meant to illuminate regarding the Tensor Processing Units which ultimately cost more 

energy to run, as well as working with a different architecture than a GPU. The biggest bars 

in this Figure are of the GPUs. 

 

Figure 5 

Compute Capacity Comparison Across Accelerators 

 

Source: Produced by the author, 2025. 
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The Figure 6 shows the difference between GPUs and TPUs regarding Energy 

Efficiency. Due to the specific design of a TPU, the usage of energy is more controlled since 

only some parts of the architecture are chosen to run the models themselves, this makes it a 

much more energetically efficient strategy to reduce the carbon footprint associated with 

LLMs 

 

Figure 6  

Energy Efficiency of GPUs and TPUs 

 

Source: Produced by the author, 2025. 

 

In Figure 7 is meant to show the inference to latency comparison between GPUs and 

TPUs. It can be observed that since the customized architecture of a TPU is more energy 

friendly the latency will therefore increase. The division of weights for this architecture is the 

main concern when it comes to latency issues, for the concatenation of the weights needs to 

be done so that the overall output can be accurate and precise. On the other hand the GPUs 

have less latency and more power expenditure. 
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Figure 7 

Inference Latency Comparison 

 

Source: Produced by the author, 2025. 

 

(VI) Secure and Clean Code Practices to Reduce Overhead 

There's now more than ever an urgent need to write good, polished, clean and secure 

code, not only to avoid critical errors but also to maintain good security measures on 

websites, but also for the development of security-by-design systems, as well as to avoid 

possible bugs/errors in the future of a critical piece of software. Code reusability as well as 

revision and maintenance, are all important and for that, code needs to be written in a manner 

that generally can be well perceived by anyone that works with writing or reading code 

(Hunter-Zinck, 2021; Digkas, 2020).  

Azure guidelines provide a set of best practices to build secure, scalable, clean and 

maintainable as well as cost-efficient applications. These guidelines are important because 

they are also applied in AI pipelines as well as LLMs. The figures below are meant to illustrate 

the difference between good and bad coding. 

The Figure 8 shows code that loads and sends entire logs with a massive token usage, 

allowing for the user to input information that can be out of context or just not need it therefore 

making latency time higher as well as energy costs. Figure 9 shows a clean code that 

determines the length of the input therefore giving it a smaller token window lowering energy 

cost and allowing for a faster runtime. 

  

 

 



 

 Expanded Science: Innovation and Research 
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE 

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS 

Figure 8 

Bad coding example #1 

 

Source: Produced by the author, 2025. 

 

 

Figure 9 

Good Coding Example #1 

 

Source: Produced by the author, 2025. 

 

In Figure 10 shows code that just attaches the results meaning every single request 

made from a user into an LLM, whereas Figure 11 routes input query from the user adding a 

length to the input and then rerouting it to a small LLM if it meets that criteria or to a large 

LLM if it meets other criteria this allows for faster queries so lower latency reducing overhead 

runtime from 50 to 80%. 
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Figure 10 

Bad Coding Example #2 

 

Source: Produced by the author, 2025. 

 

Figure 11 

Good Coding Example #4 

 

Source: Produced by the author, 2025. 

 

(VII) Case Studies & Worked Examples 

Real world deployments of LLMs, like Llama-3 series models, provide estimates of 

inference energy per 1k tokens.  Meta’s Llama-3 Shows that a 70B-parameter model 

consumes several times more energy than a fine-tuned 8B model, while the smaller one still 

performs adequately for many domain-specific applications. Another example, is a noticeable 

energy reduction of almost 100 Joules per API call is OpenAI’s GPT-4o Mini, compared with 

GPT-4o (OpenAI, 2024; Meta AI, 2024). 

 

3 CONCLUSION 

The initial analysis presented throughout this chapter demonstrates that reducing 

energy consumption and runtime overhead in LLM-assisted software development is both 

technically feasible and essential for sustainable computational practices. Modern Large 

Language Models, such as GPT-4o, Claude 3, Llama-3, and Gemini, offer extraordinary 

capabilities for generating secure, clean, and efficient code, yet their performance must be 

weighed against the significant environmental and computational costs associated with large-

scale inference. As shown through recent scientific studies, smaller or optimized models (7B–

13B parameters), quantized architectures, mixture-of-experts routing, early-exit reasoning, 
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and hardware-aware deployment strategies can collectively reduce energy consumption by 

50–80% without compromising accuracy or security. 

The review also reinforces that prompt engineering, self-planning strategies, and LLM-

aware selection frameworks such as LAIL significantly increase code-generation success 

rates while minimizing the number of model calls required—directly reducing energy 

expenditure. Likewise, secure and clean code practices, backed by Azure’s engineering 

guidelines, show that well-structured, modular, and token-efficient code pipelines contribute 

meaningfully to reducing computational overhead. In parallel, empirical case studies confirm 

that the shift from monolithic 70B-parameter systems to distilled or specialized smaller 

models results in dramatic gains in efficiency, lower emissions, and improved maintainability, 

especially when caching, batching, and routing mechanisms are included. 

Ultimately, this chapter highlights that the path toward sustainable AI-assisted 

programming relies on a holistic approach: combining model-level optimizations, careful 

choice of architecture, infrastructure-aware deployment, low-overhead prompt strategies, and 

strict adherence to secure coding principles, such as security-by-design software 

development. By integrating these practices, developers can aim to achieve high-quality, 

error-free code while simultaneously lowering carbon footprints, operational costs, 

development of security-by-design systems and avoiding runtime inefficiencies. As the 

technology continues to evolve, responsible model usage—focused on accuracy, energy 

efficiency, security and long-term sustainability—must become a central pillar of modern 

software engineering. 
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