

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN

CODE SECURITY IN LARGE LANGUAGE MODEL PIPELINES: COMPARATIVE
ANALYSIS OF INFERENCE COSTS

OTIMIZAÇÃO DA EFICIÊNCIA COMPUTACIONAL E SEGURANÇA DE CÓDIGO
POR PROJETO EM PIPELINES DE MODELOS DE LINGUAGEM DE GRANDE

PORTE: ANÁLISE COMPARATIVA DE CUSTOS DE INFERÊNCIA

OPTIMIZACIÓN DE LA EFICIENCIA COMPUTACIONAL Y SEGURIDAD DEL
CÓDIGO POR DISEÑO EN GRANDES CANALIZACIONES DE MODELOS DE
LENGUAJE: ANÁLISIS COMPARATIVO DE LOS COSTOS DE INFERENCIA

https://doi.org/10.56238/sevened2025.036-117

Tagleorge Silveira1, Pedro Pinheiro2, Hélder Rodrigo Pinto3, Salviano Pinto Soares4,

José Baptista5

ABSTRACT
Large Language Models (LLMs) have revolutionized software engineering by generating
code rapidly and accurately across a wide range of programming tasks. However, the growing
reliance on these models raises concerns regarding their energy consumption, runtime
overhead, and the efficiency of achieving successful, security-by-design, and maintainable
code. This article presents an analytical comparison of several leading LLMs—such as
OpenAI’s GPT series, Anthropic’s Claude, Meta’s Llama, and Google’s Gemini—by
evaluating their success rates in producing secure and optimized code, the number of
prompts required for successful output, and the corresponding computational and energy
costs. The findings emphasize strategies to balance accuracy, performance, and
sustainability in LLM-assisted programming.

Keywords: LLMs. Energy Efficiency. Cybersecurity. Security-by-design. Optimization.

RESUMO
Os Grandes Modelos de Linguagem (LLMs) revolucionaram a engenharia de software ao
gerar código de forma rápida e precisa em uma ampla gama de tarefas de programação. No

1 Master and Doctoral Student Electrical and Computer Engineering (ECE). Universidade de Trás-os-Montes
e Alto Douro (UTAD). Professor at Instituto Superior de Tecnologias Avançadas. ISTEC Porto. Researcher at
CITECA . ISTEC Porto, and IEEE (S’17–M’21). E-mail: tagleorge@ieee.org,
2 Multimedia Engineering Student. Instituto Superior de Tecnologias Avançadas (ISTEC Porto). CITECA -
ISTEC Porto.E-mail: pedro.pinheiro8912@gmail.com Orcid: https://orcid.org/0009-0009-5866-0582
3 Dr. in Information Sciences. MSc in Computer Engineering. PG in Artificial Intelligence & Machine Learning.
MBA in Business Management. Professor at Instituto Superior de Tecnologias Avançadas (ISTEC
Porto).Researcher at CITECA - ISTEC Porto, Professor at ISEP and Researcher at GECAD - ISEP.
E-mail: helder.pinto@my.istec.pt, Orcid: https://orcid.org/0009-0003-5810-9383.
4 Dr. in Electrical Engineering. Professor School of Sciences and Technology-Engineering Department
(UTAD), 5000-801 Vila Real. Portugal; Researcher at Institute of Electronics and Informatics Engineering of
Aveiro (IEETA). University of Aveiro, 3810-193 Aveiro, Portugal, and Intelligent Systems Associate Laboratory
(LASI). E-mail: salblues@utad.pt, Orcid: https://orcid.org/0000-0001-5862-5706.
5 Dr. in Electrical and Computer Engineering. Professor School of Sciences and Technology-Engineering
Department (UTAD), 5000-801 Vila Real, Portugal, Researcher in Institute of Systems and Computing
Engineering (INESC-TEC) Porto.E-mail: baptista@utad.pt, Orcid: https://orcid.org/0000-0003-0297-4709.

mailto:tagleorge@ieee.org

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

entanto, a crescente dependência desses modelos levanta preocupações quanto ao seu
consumo de energia, sobrecarga de tempo de execução e à eficiência na obtenção de um
código bem-sucedido, seguro desde a concepção e de fácil manutenção. Este artigo
apresenta uma comparação analítica de vários LLMs líderes — como a série GPT da
OpenAI, Claude da Anthropic, Llama da Meta e Gemini do Google — avaliando as suas
taxas de sucesso na produção de código seguro e otimizado, o número de prompts
necessários para uma saída bem-sucedida e os custos computacionais e energéticos
correspondentes. As conclusões enfatizam estratégias para equilibrar precisão,
desempenho e sustentabilidade na programação assistida por LLM.

Palavras-chave: LLMs. Eficiência Energética. Cibersegurança. Segurança por Design.
Otimização.

RESUMEN
Los Grandes Modelos de Lenguaje (LLM) han revolucionado la ingeniería de software al
generar código de forma rápida y precisa en una amplia gama de tareas de programación.
Sin embargo, la creciente dependencia de estos modelos genera inquietudes respecto de su
consumo de energía, la sobrecarga en tiempo de ejecución y la eficiencia para lograr un
código exitoso, seguro por diseño y mantenible. Este artículo presenta una comparación
analítica de varios LLM líderes, como la serie GPT de OpenAI, Claude de Anthropic, Llama
de Meta y Gemini de Google, evaluando sus tasas de éxito en la producción de código
seguro y optimizado, el número de indicaciones necesarias para obtener un resultado
satisfactorio y los correspondientes costes computacionales y energéticos. Los resultados
ponen de relieve las estrategias para equilibrar la precisión, el rendimiento y la sostenibilidad
en la programación asistida por LLM.

Palabras clave: Llms. Eficiencia Energética. Ciberseguridad. Seguridad por Diseño.
Optimización.

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

1 INTRODUCTION

The need to reduce costs and improve efficiency is a necessity of modern times. Code

security and efficiency is critical for the best usage of required systems and functionalities

that require less runtime and less energy expenditure. The focus of this analysis is conducted

mainly on the parameters mentioned above, in order to determine if both of them can be

lowered without sacrificing models resourcefulness and quality, therefore making sure that

the desired output of a correct, error free code and the development of secure-by-design

systems, can be achieved without having many losses in time, energy, code efficiency, and

security. The effective need of having the safety and efficiency of the code generated by an

LLM are the priority in this matter, however, the analysis of the cost-benefit ratio is also

important for large scale programs that work with large data sets, making sure that no error

occurs, and if it does, that the code refactoring is done appropriately and quickly, saving

energy and time.

 The motivation for the realization of this work is centered around the need for better

management of good coding practices, as well as the need to analyze the resulting costs of

the used energy and time spent working on providing possible code-refactoring solutions.

This theme is relevant today as the demand for reliable, emission-free energy is increasingly

urgent. Without one, the need to reduce costs and augment efficiency is critical for the well

management of society nowadays. Therefore, the analysis of the objectives mentioned

above, as well as the possible comparison between some LLMs, is highly needed to

understand and make a full comprehensive use of the capabilities of the tools at hand in order

to achieve the best possible result with low-cost performance (Bhatt, 2025).

2 METHOD

In this investigation, an initial analysis of recent and relevant literature was conducted,

which sought both to identify the articles to be studied in technology and the usage of AI for

the best possible code output with as few errors as possible, whilst maintaining energy

efficiency and low runtime overhead. The process of evaluation and interpretation of the

reflections placed on the selected biblioFigureic material was made over selected articles that

made comparisons between different LLM models, as well as the study of spent energy

resources when refactoring or generating specific code.

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

(I) Efficient, faster coding to increase success rates

The need to enhance and improve the coding methods and speed has always been a

much regarded need in tech. Nowadays, LLMs combined with agentic AIs can reduce time

strains and make apps, programs and websites in a matter of minutes, in comparison to a

human developer. However, since the models are not perfect, the code can contain some

noticeable errors that a good developer would not make, even if it takes them longer to

develop the software in question. Another impactful parameter when generating good and

efficient code is a well written prompt that the model will be able to process with a more

degree of precision, without the need to deviate from the objective at hand. Different prompt

strategies may be implemented when using LLMs to determine the success rate that one can

output, as an example, the comparison of the success rates of six different prompt strategies

was made on GPT-4, as well as other LLMs, showing the difference in the number of

attempts, as well as the change in the degree of difficulty of the tasks themselves (Hou, 2024).

Another control parameter that should be considered is the self-planning code

generation that we can implement using LLMs. The self-planning phase can be done by

matching the intent with the plan therefore not only giving the initial prompt of what the user

wants the LLM to do but also indicating step by step specifically what the LLM needs to do

therefore the output should be a lot cleaner and a lot more accurate than if it was only with

the initial prompt without any guidance (Jiang, 2023; Ye, 2025). Another technique involving

a Large language model Aware selection approach for In-context-Learning based code

generation named LAIL, is also to be considered for the remarkable improvements in

generating desired programs, outperforming state-of-the-art baselines by considerable

amount (Li, 2023). This new approach uses other LLMs To select a positive or negative

example for requirement, this means that other LLMs are responsible for the ultimate

outcome of LAIL.

(II) Measuring energy and emissions in ML

The environmental costs that training an LLM have are significant. Dozens of hundreds

of tons of CO2 are just a simple fact of the cost of training and LLM, not to mention the

expenditure and energy. An example of that is the LLM Bloom which generated 24,7 and 50,5

tons of CO2 (Luccioni, 2022; Jiang, 2024; Singh, 2024). The training costs of LLMs are indeed

significant, however inference, the process of responding to user queries is where costs

ultimately increase exponentially and the environment is more affected. One query on

ChatGPT is estimated to cause an emission of 4 grams of CO2 more than 20 times more

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

than one web search. The reduction of carbon footprint when training/using LLMs has been

largely overlooked, therefore the need to make responsible advancements to reduce carbon

emissions prioritizing the environment without decreasing efficiency when using LLMs is a

needed directive for the future (Wu, 2025; Ding, 2024; Ozcan, 2025).

To show an initial example of a small sample of models, in terms of energy per API call

that the models represented in Figure 1. This shows us that there is a certain amount of

energy that is used whenever we prompt the model to obtain a relative output. We can also

infer from this that the largest models use the most amount of energy, whereas the smaller

models use the least amount.

Figure 1

Energy per API Call Model Comparison

Source: Produced by the author, 2025.

As can be observed on Figure 2 again, the largest models consume the highest

amount of energy per API call and have the largest response time, whereas the low parameter

models are the opposite. If the objective is to be truthful to energy efficient models, then we

cannot use LLMs. However compressed LLMs can provide results with near equal success

rate in comparison to uncompressed LLMs while spending less energy per API call and taking

less time.

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

Figure 2

Energy vs Latency Model Comparison

Source: Produced by the author, 2025.

As can be seen, Figure 3, the prompt success rate doesn't differ much from model to

model, only on more complex prompts can relevantly differences from model to model.

Figure 3

Prompt Success Rate Model Comparison

Source: Produced by the author, 2025.

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

Prompt success rate is considered the capability of an LLM to complete the task given

by the used in a single prompt with no additional guidelines/instructions on any other prompts.

However, in Figure 4 it can be observed, in a much more comprehensive manner, that latency

differs from models with more parameters in comparison to models with less parameters.

Figure 4

Average Latency Model Comparison

Source: Produced by the author, 2025.

(III) Model selection & architecture choices

Model selection and Architectural choices are important for achieving a more accurate

LLM. Studies indicate that 7B and 13B models can achieve high accuracy rates despite

having lower parameters and in token usage. The more tokens are used in inference

processes the more energy will be consumed for the expected output. Not only this but there's

also a need to reduce the latency of said inference. The idea is that the usage of less tokens

per second over a large share batch size as well as over time becomes less and less,

therefore reducing the associated energy costs and carbon footprint (Bian, 2025; Yuan,

2025).

There's also the possibility to use a mixture of experts’ architecture for better and faster

reasoning from LLMs. This consists of a router that redirects tokens to the experts,

specialized sub-networks, that handle different parts of the problem, weighing them to give a

more accurate and precise output (Yuan, 2025). This approach is one of the most energy

saving options that we must consider, since it disperses energy for more selected and unique

parts of processing and comprehension whereas beforehand one would need to access an

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

entire LLM for just a simple query. With this method only parts of an LLM need to be accessed

to generate a viable and accurate response. The more complex the mending process, more

parts will need to be accessed in order to be accurate and therefore achieve a proper output.

The consideration of smaller language models to achieve low latency while

maintaining the same level of accuracy as larger models is noticeable, inference and token

utilization are also kept low therefore the need to use less memory is also noticeable. For

problem specific questions/objectives the 7B parameters LLMs are an option to be

considered, they can even be used to train larger LLMs with 70B or 150B parameters. This

takes into consideration the rate of accuracy and success when responding to user inputs.

However, the degree of accuracy and detail on a response needs to be followed with

reduction and energy costs.

(IV) Runtime Optimizations

Runtime optimizations are important to consider reducing time spent and energy spent

with reasoning. Quantization is an important technique to consider for improving model

memory footprint and keeping model accuracy. Post training quantization reduces inference

compute by up to 3x-4x, with no noticeable performance loss. The knowledge distillation

technique relies on smaller models teaching larger ones, therefore reducing costs associated

with processing information and reducing runtime overhead, as well as cutting costs by 70%

(Xiao, 2023; Ganesh, 2024).

The early exit technique allows the reduction of execution time, therefore being an

interesting aspect to consider when wanting to lower energy costs. The technique consists in

reducing the time of reasoning by verifying the threshold of said reasoning and when the

threshold achieves a desired percentage (40-70%), the reasoning will stop, and an answer

will be given. This method benefits simpler, less complex input prompts from the user,

reducing overall run time overhead and lowering energy costs by 23-50% but also lowering

response time (Ilager, 2025).

(V) Hardware & Infrastructure Choices

Hardware selection is a fundamental prospect that needs to be considered when

establishing new LLM training routines. GPUs are the standard for LLM inference, however

special accelerators such as TPUs, AWS Inferentia, and other emerging AI specific Asics, can

also achieve a high energy efficiency per token processed. The need to develop new

customized accelerators has been a modern advancement made by companies like Google,

to improve speed and energetic efficiency on LLMs (Li, 2024; Chowdhery, 2022). Tensor

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

model parallelism is another method to improve overall processing on the LLM by creating

different partitions of the weights and then concatenating them to achieve the desired output.

This is done so that there is less strain on memory. The most commonly used format is the

Megatron LM, which is used on LLM's with 50-70b parameters, however, the latency

increases with this technique, however the precision and scalability increase as well.

(Narayanan, 2021).

An important note to take into account is that energy efficiency per token is referring

to long-term usage since we are discussing LLMs that is the main crucial point that we need

to take into account when we speak about energy efficiency we need to consider a long-term

options instead of short-term ones, reliability needs to be achieved, for that to consideration

of accuracy and precision as the core and primary motivators for such research needs to be

invoked. After that, the need for energy efficient solutions must be pursued. the next Figures

will show the difference in energy as well as cost efficiency between certain GPUs and TPUs,

as well as inference latency comparison, so that inadequate study of such values can be

done.

In Figure 5 shows the difference from several GPUs and TPUs in compute capacity.

This is meant to illuminate regarding the Tensor Processing Units which ultimately cost more

energy to run, as well as working with a different architecture than a GPU. The biggest bars

in this Figure are of the GPUs.

Figure 5

Compute Capacity Comparison Across Accelerators

Source: Produced by the author, 2025.

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

The Figure 6 shows the difference between GPUs and TPUs regarding Energy

Efficiency. Due to the specific design of a TPU, the usage of energy is more controlled since

only some parts of the architecture are chosen to run the models themselves, this makes it a

much more energetically efficient strategy to reduce the carbon footprint associated with

LLMs

Figure 6

Energy Efficiency of GPUs and TPUs

Source: Produced by the author, 2025.

In Figure 7 is meant to show the inference to latency comparison between GPUs and

TPUs. It can be observed that since the customized architecture of a TPU is more energy

friendly the latency will therefore increase. The division of weights for this architecture is the

main concern when it comes to latency issues, for the concatenation of the weights needs to

be done so that the overall output can be accurate and precise. On the other hand the GPUs

have less latency and more power expenditure.

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

Figure 7

Inference Latency Comparison

Source: Produced by the author, 2025.

(VI) Secure and Clean Code Practices to Reduce Overhead

There's now more than ever an urgent need to write good, polished, clean and secure

code, not only to avoid critical errors but also to maintain good security measures on

websites, but also for the development of security-by-design systems, as well as to avoid

possible bugs/errors in the future of a critical piece of software. Code reusability as well as

revision and maintenance, are all important and for that, code needs to be written in a manner

that generally can be well perceived by anyone that works with writing or reading code

(Hunter-Zinck, 2021; Digkas, 2020).

Azure guidelines provide a set of best practices to build secure, scalable, clean and

maintainable as well as cost-efficient applications. These guidelines are important because

they are also applied in AI pipelines as well as LLMs. The figures below are meant to illustrate

the difference between good and bad coding.

The Figure 8 shows code that loads and sends entire logs with a massive token usage,

allowing for the user to input information that can be out of context or just not need it therefore

making latency time higher as well as energy costs. Figure 9 shows a clean code that

determines the length of the input therefore giving it a smaller token window lowering energy

cost and allowing for a faster runtime.

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

Figure 8

Bad coding example #1

Source: Produced by the author, 2025.

Figure 9

Good Coding Example #1

Source: Produced by the author, 2025.

In Figure 10 shows code that just attaches the results meaning every single request

made from a user into an LLM, whereas Figure 11 routes input query from the user adding a

length to the input and then rerouting it to a small LLM if it meets that criteria or to a large

LLM if it meets other criteria this allows for faster queries so lower latency reducing overhead

runtime from 50 to 80%.

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

Figure 10

Bad Coding Example #2

Source: Produced by the author, 2025.

Figure 11

Good Coding Example #4

Source: Produced by the author, 2025.

(VII) Case Studies & Worked Examples

Real world deployments of LLMs, like Llama-3 series models, provide estimates of

inference energy per 1k tokens. Meta’s Llama-3 Shows that a 70B-parameter model

consumes several times more energy than a fine-tuned 8B model, while the smaller one still

performs adequately for many domain-specific applications. Another example, is a noticeable

energy reduction of almost 100 Joules per API call is OpenAI’s GPT-4o Mini, compared with

GPT-4o (OpenAI, 2024; Meta AI, 2024).

3 CONCLUSION

The initial analysis presented throughout this chapter demonstrates that reducing

energy consumption and runtime overhead in LLM-assisted software development is both

technically feasible and essential for sustainable computational practices. Modern Large

Language Models, such as GPT-4o, Claude 3, Llama-3, and Gemini, offer extraordinary

capabilities for generating secure, clean, and efficient code, yet their performance must be

weighed against the significant environmental and computational costs associated with large-

scale inference. As shown through recent scientific studies, smaller or optimized models (7B–

13B parameters), quantized architectures, mixture-of-experts routing, early-exit reasoning,

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

and hardware-aware deployment strategies can collectively reduce energy consumption by

50–80% without compromising accuracy or security.

The review also reinforces that prompt engineering, self-planning strategies, and LLM-

aware selection frameworks such as LAIL significantly increase code-generation success

rates while minimizing the number of model calls required—directly reducing energy

expenditure. Likewise, secure and clean code practices, backed by Azure’s engineering

guidelines, show that well-structured, modular, and token-efficient code pipelines contribute

meaningfully to reducing computational overhead. In parallel, empirical case studies confirm

that the shift from monolithic 70B-parameter systems to distilled or specialized smaller

models results in dramatic gains in efficiency, lower emissions, and improved maintainability,

especially when caching, batching, and routing mechanisms are included.

Ultimately, this chapter highlights that the path toward sustainable AI-assisted

programming relies on a holistic approach: combining model-level optimizations, careful

choice of architecture, infrastructure-aware deployment, low-overhead prompt strategies, and

strict adherence to secure coding principles, such as security-by-design software

development. By integrating these practices, developers can aim to achieve high-quality,

error-free code while simultaneously lowering carbon footprints, operational costs,

development of security-by-design systems and avoiding runtime inefficiencies. As the

technology continues to evolve, responsible model usage—focused on accuracy, energy

efficiency, security and long-term sustainability—must become a central pillar of modern

software engineering.

REFERENCES

1. Bian, S., Yan, M., & Venkataraman, S. (2025). Scaling Inference-Efficient Language
Models. ArXiv, abs/2501.18107. https://doi.org/10.48550/arxiv.2501.18107.

2. Bhatt, P., & Kashiyani, P. (2025). Generative AI for Code Synthesis: A Comparative Study
of Large Language Models in Software Engineering. International Journal of Scientific
Research in Engineering and Management. https://doi.org/10.55041/ijsrem44215.

3. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,
Chung, H., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J.,
Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson,
B., Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya,
A., Ghemawat, S., Dev, S., Michalewski, H., García, X., Misra, V., Robinson, K., Fedus,
L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan,
D., Agrawal, S., Omernick, M., Dai, A., Pillai, T., Pellat, M., Lewkowycz, A., Moreira, E.,
Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Díaz, M., Firat, O., Catasta,

https://doi.org/10.48550/arxiv.2501.18107
https://doi.org/10.55041/ijsrem44215

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., & Fiedel, N. (2022). PaLM:
Scaling Language Modeling with Pathways. ArXiv, abs/2204.02311.

4. Ding, Y., & Shi, T. (2024). Sustainable LLM Serving: Environmental Implications,
Challenges, and Opportunities: Invited Paper. 2024 IEEE 15th International Green and
Sustainable Computing Conference (IGSC), 37–38.
https://doi.org/10.1109/igsc64514.2024.00016

5. Digkas, G., Chatzigeorgiou, A., Ampatzoglou, A., & Avgeriou, P. (2020). Can Clean New
Code Reduce Technical Debt Density? IEEE Transactions on Software Engineering, 48,
1705–1721. https://doi.org/10.1109/tse.2020.3032557

6. Ganesh, P., et al. (2024). DeciLM: Distilled Models for Efficient LLM Serving. ACL 2024.
https://aclanthology.org/2024.acl-long.122/

7. Hou, W., & Ji, Z. (2024). Comparing Large Language Models and Human Programmers
for Generating Programming Code. Advanced Science, 12.
https://doi.org/10.1002/advs.202412279.

8. Hunter-Zinck, H., De Siqueira, A., Vasquez, V., Barnes, R., & Martinez, C. (2021). Ten
simple rules on writing clean and reliable open-source scientific software. PLoS
Computational Biology, 17. https://doi.org/10.1371/journal.pcbi.1009481.

9. Ilager, S., Briem, L., & Brandić, I. (2025). Green-Code: Learning to Optimize Energy
Efficiency in LLM-Based Code Generation. 2025 IEEE 25th International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), 559–569.
https://doi.org/10.1109/ccgrid64434.2025.00068.

10. Jiang, P., Sonne, C., Li, W., You, F., & You, S. (2024). Preventing the Immense Increase
in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots.
Engineering. https://doi.org/10.1016/j.eng.2024.04.002.

11. Jiang, X., Dong, Y., Wang, L., Shang, Q., & Li, G. (2023). Self-Planning Code Generation
with Large Language Models. ACM Transactions on Software Engineering and
Methodology, 33, 1–30. https://doi.org/10.1145/3672456.

12. Li, J., Tao, C., Li, J., Li, G., Jin, Z., Zhang, H., Fang, Z., & Liu, F. (2023). Large Language
Model-Aware In-Context Learning for Code Generation. ACM Transactions on Software
Engineering and Methodology. https://doi.org/10.1145/3715908.

13. Li, J., Xu, J., Huang, S., Chen, Y., Li, W., Liu, J., Lian, Y., Pan, J., Ding, L., Zhou, H.,
Wang, Y., & Dai, G. (2024). Large Language Model Inference Acceleration: A
Comprehensive Hardware Perspective. ArXiv, abs/2410.04466.
https://doi.org/10.48550/arxiv.2410.04466.

14. Luccioni, A., Viguier, S., & Ligozat, A. (2022). Estimating the Carbon Footprint of BLOOM,
a 176B Parameter Language Model. J. Mach. Learn. Res., 24, 253:1–253:15.
https://doi.org/10.48550/arxiv.2211.02001.

15. Meta AI. (2024). The Llama 3 Herd of Models: Technical Report. Meta AI Research.
Available in https://arxiv.org/pdf/2407.21783.

16. Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Patwary, M., Korthikanti, V.,
Vainbrand, D., Kashinkunti, P., Bernauer, J., Catanzaro, B., Phanishayee, A., & Zaharia,
M. (2021). Efficient Large-Scale Language Model Training on GPU Clusters Using

https://doi.org/10.1109/igsc64514.2024.00016
https://doi.org/10.1109/igsc64514.2024.00016
https://doi.org/10.1109/igsc64514.2024.00016
https://doi.org/10.1109/tse.2020.3032557
https://doi.org/10.1109/tse.2020.3032557
https://aclanthology.org/2024.acl-long.122/
https://aclanthology.org/2024.acl-long.122/
https://aclanthology.org/2024.acl-long.122/
https://doi.org/10.1002/advs.202412279
https://doi.org/10.1002/advs.202412279
https://doi.org/10.1002/advs.202412279
https://doi.org/10.1371/journal.pcbi.1009481
https://doi.org/10.1371/journal.pcbi.1009481
https://doi.org/10.1109/ccgrid64434.2025.00068
https://doi.org/10.1109/ccgrid64434.2025.00068
https://doi.org/10.1109/ccgrid64434.2025.00068
https://doi.org/10.1016/j.eng.2024.04.002
https://doi.org/10.1016/j.eng.2024.04.002
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3715908
https://doi.org/10.1145/3715908
https://doi.org/10.48550/arxiv.2410.04466
https://doi.org/10.48550/arxiv.2410.04466
https://doi.org/10.48550/arxiv.2410.04466
https://doi.org/10.48550/arxiv.2211.02001
https://doi.org/10.48550/arxiv.2211.02001
https://doi.org/10.48550/arxiv.2211.02001

 Expanded Science: Innovation and Research
OPTIMIZING COMPUTATIONAL EFFICIENCY AND SECURITY-BY-DESIGN CODE SECURITY IN LARGE

LANGUAGE MODEL PIPELINES: COMPARATIVE ANALYSIS OF INFERENCE COSTS

Megatron-LM. SC21: International Conference for High Performance Computing,
Networking, Storage and Analysis, 1–14. https://doi.org/10.1145/3458817.3476209

17. OpenAI. (2024). OpenAI o-series models. OpenAI Technical Report. Available in
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-
system-card.pdf.

18. Ozcan, M., Wiesner, P., Weiss, P., & Kao, O. (2025). Quantifying the Energy Consumption
and Carbon Emissions of LLM Inference via Simulations. ArXiv, abs/2507.11417.
https://doi.org/10.48550/arxiv.2507.11417.

19. Singh, A., Patel, N., Ehtesham, A., Kumar, S., & Khoei, T. (2024). A Survey of
Sustainability in Large Language Models: Applications, Economics, and Challenges.
2025 IEEE 15th Annual Computing and Communication Workshop and Conference
(CCWC), 00008–00014. https://doi.org/10.1109/ccwc62904.2025.10903774.

20. Wu, Y., Hua, I., & Ding, Y. (2025). Unveiling Environmental Impacts of Large Language
Model Serving: A Functional Unit View. ArXiv, abs/2502.11256.
https://doi.org/10.48550/arxiv.2502.11256.

21. Xiao, G., et al. (2023). SmoothQuant: Accurate and Efficient Post-Training Quantization
for LLMs. arXiv preprint. https://arxiv.org/abs/2211.10438

22. Ye, T., Huang, W., Zhang, X., T., Liu, P., Yin, J., & Wang, W. (2025). LLM4EFFI:
Leveraging Large Language Models to Enhance Code Efficiency and Correctness. ArXiv,
abs/2502.18489. https://doi.org/10.48550/arxiv.2502.18489.

23. Yuan, Z., Sun, W., Liu, Y., Zhou, H., Zhou, R., Li, Y., Zhang, Z., Song, W., Huang, Y., Jia,
H., Murugesan, K., Wang, Y., He, L., Gao, J., Sun, L., & Ye, Y. (2025). EfficientLLM:
Efficiency in Large Language Models. ArXiv, abs/2505.13840.
https://doi.org/10.48550/arxiv.2505.13840.

https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.48550/arxiv.2507.11417
https://doi.org/10.48550/arxiv.2507.11417
https://doi.org/10.48550/arxiv.2507.11417
https://doi.org/10.1109/ccwc62904.2025.10903774
https://doi.org/10.1109/ccwc62904.2025.10903774
https://doi.org/10.48550/arxiv.2502.11256
https://doi.org/10.48550/arxiv.2502.11256
https://doi.org/10.48550/arxiv.2502.11256
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://doi.org/10.48550/arxiv.2502.18489
https://doi.org/10.48550/arxiv.2502.18489
https://doi.org/10.48550/arxiv.2505.13840
https://doi.org/10.48550/arxiv.2505.13840
https://doi.org/10.48550/arxiv.2505.13840

