IMPACT OF CLIMATE CHANGE ON WATER AVAILABILITY FOR AGRICULTURE IN THE MIZQUE RIVER BASIN
DOI:
https://doi.org/10.56238/isevmjv4n4-019Keywords:
Climate Change, Water Availability, Agriculture Bajo Riego – Secano, Supply-Demand BalanceAbstract
Agriculture, whether low or dry, depends heavily on climatic stability, in particular on the amount of rain and temperatures, factors that are significantly affected by climate change. These changes affect both natural ecosystems and agricultural producers dependent on water resources, as agricultural production is closely linked to evapotranspiration, which increases with higher temperatures. In semi-arid areas such as the basin of the Mizque River, most of the rainwater is lost due to evaporation, resulting in low productivity of rainwater. The main objective of the investigation was to determine the availability of the water resource in the basin of the Mizque river below the climatic scenarios: one of the baseline and the other of climatic change. For this purpose, historical climate data was compiled and projections were generated for the year 2050 using the MIROC5 climate model, selecting the most critical RCP 8.5 scenario. The data was processed and interpolarized to represent them at the level of subcuencas, and the Crawford hydrological model was used to quantify water supply (monthly dimming), while agricultural demand was estimated using the CROPWAT software. Finally, the role of water storage structures (water storage structures) in the balance between supply and demand was evaluated, and their possible contribution in a context of climate change. The investigation thus establishes a solid methodological basis to analyze the vulnerability and adaptation of the agricultural sector to climate variations in the future, offering useful tools for water management and planning in regions of high environmental and socioeconomic sensitivity.
References
AGRIFOR. (2009). *Cambio climático en América Latina*. Programa Euroclima, Comisión Europea.
Babawande, O. (2015). *Sustainable use of land and water under rainfed and deficit irrigation conditions in Ogun-Osun River Basin, Nigeria* [Doctoral dissertation, Wageningen University and UNESCO-IHE Institute for Water Education].
Bueno, M. (2019). *Alternativas de riego tecnificado, Zona 1 de la Asociación de Regantes “Pampa Capinota”* [Master’s thesis, CLAS-UMSS].
Campos, D. (1991). *Estimación y aprovechamiento del escurrimiento*. Universidad Autónoma Potosina.
Chereque, W. (1989). *Hidrología: Para estudiantes de ingeniería civil*. Pontificia Universidad Católica del Perú.
CLAS-UMSS. (2004). *Diagnóstico biofísico de la cuenca del Río Mizque*. Programa Nacional de Cuencas.
Coca, G. (2018). *Requerimiento de agua de la subcentral Curubamba perteneciente a la asociación de regantes “ARAP” en el municipio de Sacaba* [Master’s thesis, CLAS-UMSS].
Da Silva Neto, E., Pereira, M., Feitosa, J., & De Andrade, T. (2016). Aggregate formation and soil organic matter under different vegetation types in Atlantic Forest from Southeastern Brazil. *Semina: Ciências Agrárias, 37*(6), 3927–3940. https://doi.org/10.5433/1679-0359.2016v37n6p3927
Davidson, E. A., Trumbore, S. E., & Amundson, R. (2000). Soil warming and organic carbon content. *Nature, 408*, 789–790. https://doi.org/10.1038/35048672
Dong, Z., Jia, W., Sarukkalige, R., Fu, G., Meng, Q., & Wang, Q. (2020). Innovative trend analysis of air temperature and precipitation in the Jinsha River Basin, China. *Water, 12*(11), 3293. https://doi.org/10.3390/w12113293
FAO. (2011). *Climate change, water and food security* (FAO Water Reports No. 36). Food and Agriculture Organization of the United Nations. http://www.fao.org/3/i2096e/i2096e.pdf
Fei, Y., Leigang, S., & Juanle, W. (2023). Monthly variation and correlation analysis of global temperature and wind resources under climate change. *Energy Conversion and Management, 285*, 116992. https://doi.org/10.1016/j.enconman.2023.116992
Fox, P., & Rockström, J. (2003). Supplemental irrigation for dry-spell mitigation of rain-fed agriculture in the Sahel. *Agricultural Water Management, 61*(1), 29–50. https://doi.org/10.1016/S0378-3774(03)00008-8
Goetter, J. (2010). *El cambio climático en el área rural Cochabamba y Norte de Potosí. Reflexiones acerca de proyectos de cosecha de agua como medidas de adaptación*. ASDI – GTZ - PROAGRO.
Goetter, J., & Picht, H. (2010). *Adaptación al cambio climático: Cosecha de agua de lluvia con “atajados” en Bolivia*. Red Sectorial Gestión Ambiental y Desarrollo Rural América Latina y Caribe (GADeR-ALC), PROAGRO/GTZ. https://www.researchgate.net/publication/277013604
Hayden, B. (2024). Climate. In *Encyclopedia Britannica*. https://www.britannica.com/science/climate-meteorology
IPCC. (2007). *Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge University Press.
Jasrotia, A. S., Majhi, A., & Singh, S. (2009). Water balance approach for rainwater harvesting using remote sensing and GIS techniques, Jammu Himalaya, India. *Water Resources Management, 23*(14), 3035–3055. https://doi.org/10.1007/s11269-009-9422-5
Kesavan, M., & Senthilkumar, M. (2019). Effect of average air temperature and relative humidity on global radiation. *International Journal of Engineering Trends and Technology, 67*(3), 37–41. https://doi.org/10.14445/22315381/IJETT-V67I3P207
Liu, Y., Li, S., Sun, X., & Yu, X. (2016). Variations of forest soil organic carbon and its influencing factors in east China. *Annals of Forest Science, 73*(2), 501–511. https://doi.org/10.1007/s13595-016-0543-8
Marengo, J., Jones, R., Alves, L., & Valverde, M. (2009). Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. *International Journal of Climatology, 29*(15), 2241–2255. https://doi.org/10.1002/joc.1863
Moya, A., Ortega, J., & Jurado, X. (2015). Evaluación del modelo climático global MIROC5 y estimaciones de temperatura y precipitaciones para las zonas sur y norte del Perú. *Apuntes de Ciencia & Sociedad, 5*(2), 59–70. http://dx.doi.org/10.18259/acs.2015028
Oweis, T., & Hachum, A. (2006). Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. *Agricultural Water Management, 80*(1-3), 57–73. https://doi.org/10.1016/j.agwat.2005.07.004
PNUD. (2011). *Tras las huellas del cambio climático en Bolivia. Estado del arte del conocimiento sobre adaptación al cambio climático. Agua y seguridad alimentaria*. Impresión: ABBASE Ltda.
Rockström, J., & Falkenmark, M. (2000). Semi-arid crop production from a hydrological perspective – Gap between potential and actual yields. *Critical Reviews in Plant Sciences, 19*(4), 319–346. https://doi.org/10.1080/07352680091139259
Rockström, J. (2002). Potential of rainwater harvesting to reduce pressure on freshwater resources. *International Water Conference, Hanoi, Vietnam, October 14-16, 2002*.
Saxton, K. (1987). *Soil water characteristics. Hydraulic properties calculator*. USDA, Agricultural Research Service, Washington State University.
Seiler, C. (2009). *Implementation and validation of a regional climate model for Bolivia*. Fundación Amigos de la Naturaleza (FAN-Bolivia).
Seth, A., Rauscher, S., Camargo, S., Qian, J., & Pal, J. (2007). RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. *Climate Dynamics, 28*(5), 461–480. https://doi.org/10.1007/s00382-006-0191-z
SIWI. (2001). *Water harvesting for upgrading of rainfed agriculture. Problem analysis and research needs* (SIWI Report 11). Stockholm International Water Institute.
Smith, M. (1992). *CROPWAT: A computer program for irrigation planning and management* (FAO Irrigation and Drainage Papers No. 46). Food and Agriculture Organization of the United Nations.
Torrico, G. (2011). *Producción hídrica de la Cuenca Pucara* [Master’s thesis, CLAS, Universidad Mayor de San Simón].
UNESCO, & UN-Water. (2020). *United Nations world water development report 2020: Water and climate change*. United Nations Educational, Scientific and Cultural Organization.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., & Kawamiya, M. (2011). MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. *Geoscientific Model Development, 4*(4), 845–872. https://doi.org/10.5194/gmd-4-845-2011
Yang, H., Xiao, H., Guo, C., Sun, Y., & Gao, R. (2020). Innovative trend analysis of annual and seasonal precipitation in Ningxia, China. *Atmospheric and Oceanic Science Letters, 13*(4), 308–315. https://doi.org/10.1080/16742834.2020.1752616
Yarahmadi, J. (2003). *The integration of satellite images, GIS and CROPWAT model to investigation of water balance in irrigated area. A case study of Salmas and Tassoj plain, Iran* [Master’s thesis, International Institute for Geoinformation Science and Earth Observation].
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mauricio Marcelo Auza Aramayo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.