PROFILE OF EXHALED VOLATILE ORGANIC COMPOUNDS ASSOCIATED WITH BREAST CANCER

Authors

  • Fernanda Michelle Orduña Medina
  • Lorena Díaz de León-Martínez
  • Angélica Prieto Gómez
  • Grecia D. D. Alarcón Rivera
  • Luz Eugenia Alcántara Quintana

DOI:

https://doi.org/10.56238/isevmjv4n4-021

Keywords:

Volatile Organic Compounds, Breast Cancer, Electronic Nose, Early Diagnosis

Abstract

Breast cancer is one of the leading causes of female mortality worldwide, due to late detection and limited access to diagnostic methods. This article reviews the feasibility of using volatile organic compounds (VOCs) present in exhaled breath as a complementary diagnostic tool through the use of electronic noses. These noninvasive technologies can detect specific chemical patterns related to metabolic alterations associated with cancer and could be integrated into current screening systems. The review covers recent studies that use techniques such as mass spectrometry and chemical sensors to identify VOC profiles characteristic of breast cancer. Compounds such as 2-propanol, heptanal, and cyclopentanone are highlighted, which demonstrate high sensitivity and specificity in differentiating between healthy and diseased patients. The metabolic pathways involved and the biological effects of different chemical groups are also explored. Although electronic nose technology still faces technical and standardization challenges, its advantages—such as speed, low cost, and ease of use—make it a promising alternative for improving early diagnosis and personalized medicine in oncology. It is concluded that further research is needed to validate its clinical applicability.

References

Aguilar-Torres, C. R., Cisneros-Castolo, M., Stener-Lechuga, T., Pérez-Molinar, K. F., Parra-Acosta, H., Sáenz-Cabrales, I. P., ... & others. (2021). Panorama actual del tamizaje para detección del cáncer de mama en el estado de Chihuahua, México. Ginecología y Obstetricia de México, 89(2), 91–99.

Benson, J. R., Jatoi, I., Keisch, M., Esteva, F. J., Makris, A., & Jordan, V. C. (2009). Early breast cancer. The Lancet, 373(9673), 1463–1479. https://doi.org/10.1016/S0140-6736(09)60316-0

Breast Cancer Facts and Statistics 2024. (n.d.). Retrieved September 27, 2024, from https://www.breastcancer.org/facts-statistics?gad_source=1&gclid=Cj0KCQjwr9m3BhDHARIsANut04bPkbQYsZg9r-LlddKuHtGcVG1E3UTF_x-mkgTPSk7ikJSTut_kHkAaAoYJEALw_wcB

Breast cancer. (n.d.). World Health Organization. Retrieved September 3, 2024, from https://www.who.int/news-room/fact-sheets/detail/breast-cancer

Buist, D. S. M., Porter, P. L., Lehman, C., Taplin, S. H., & White, E. (2004). Factors contributing to mammography failure in women aged 40–49 years. Journal of the National Cancer Institute, 96(19), 1432–1440. https://doi.org/10.1093/jnci/djh269

Gong, S., Wang, Q., Huang, J., Huang, R., Chen, S., Cheng, X., ... & others. (2024). LC-MS/MS platform-based serum untargeted screening reveals the diagnostic biomarker panel and molecular mechanism of breast cancer. Methods, 222, 100–111. https://doi.org/10.1016/j.ymeth.2023.12.007

Hakim, M., Broza, Y. Y., Barash, O., Peled, N., Phillips, M., Amann, A., & Haick, H. (2012). Volatile organic compounds of lung cancer and possible biochemical pathways. Chemical Reviews, 112(11), 5949–5966. https://doi.org/10.1021/cr300174a

Hanna, G. B., Boshier, P. R., Markar, S. R., & Romano, A. (2019). Accuracy and methodologic challenges of volatile organic compound–based exhaled breath tests for cancer diagnosis: A systematic review and meta-analysis. JAMA Oncology, 5(1), e182815. https://doi.org/10.1001/jamaoncol.2018.2815

K, A., B, K., I, J., A, G., A, V., A, A., ... & others. (2019). Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer. Journal of Breath Research, 14(1), 016004. https://doi.org/10.1088/1752-7163/ab433d

Leemans, M., Cuzuel, V., Bauer, P., Aissa, H. B., Cournelle, G., Baelde, A., ... & others. (2023). Screening of breast cancer from sweat samples analyzed by 2-dimensional gas chromatography-mass spectrometry: A preliminary study. Cancers, 15(11), 2939. https://doi.org/10.3390/cancers15112939

Li, J., Guan, X., Fan, Z., Ching, L. M., Li, Y., Wang, X., ... & others. (2020). Non-invasive biomarkers for early detection of breast cancer. Cancers, 12(10), 2767. https://doi.org/10.3390/cancers12102767

Mangler, M., Freitag, C., Lanowska, M., Staeck, O., Schneider, A., & Speiser, D. (2012). Volatile organic compounds (VOCs) in exhaled breath of patients with breast cancer in a clinical setting. Ginekologia Polska, 83(10), 730–736.

Mittra, I., Mishra, G. A., Dikshit, R. P., Gupta, S., Kulkarni, V. Y., Shaikh, H. K. A., ... & Badwe, R. A. (2021). Effect of screening by clinical breast examination on breast cancer incidence and mortality after 20 years: Prospective, cluster randomised controlled trial in Mumbai. BMJ, 372, n256. https://doi.org/10.1136/bmj.n256

Montenegro, A., Trejos, M., & Araúz, C. (2015). Nariz electrónica inalámbrica móvil con monitoreo en tiempo real. Revista de Iniciación Científica, 1(2), 59–65.

Monticciolo, D. L., Newell, M. S., Moy, L., Niell, B., Monsees, B., & Sickles, E. A. (2018). Breast cancer screening in women at higher-than-average risk: Recommendations from the ACR. Journal of the American College of Radiology, 15(3 Pt A), 408–414. https://doi.org/10.1016/j.jacr.2017.11.034

Park, J., Shin, Y., Kim, T. H., Kim, D. H., & Lee, A. (2019). Plasma metabolites as possible biomarkers for diagnosis of breast cancer. PLoS One, 14(12), e0225129. https://doi.org/10.1371/journal.pone.0225129

Phillips, M., Cataneo, R. N., Saunders, C., Hope, P., Schmitt, P., & Wai, J. (2010). Volatile biomarkers in the breath of women with breast cancer. Journal of Breath Research, 4(2), 026003. https://doi.org/10.1088/1752-7155/4/2/026003

Queralto, N., Berliner, A. N., Goldsmith, B., Martino, R., Rhodes, P., & Lim, S. H. (2014). Detecting cancer by breath volatile organic compound analysis: A review of array-based sensors. Journal of Breath Research, 8(2), 027112. https://doi.org/10.1088/1752-7155/8/2/027112

Silva, C. L., Perestrelo, R., Silva, P., Tomás, H., & Câmara, J. S. (2017). Volatile metabolomic signature of human breast cancer cell lines. Scientific Reports, 7, 43969. https://doi.org/10.1038/srep43969

Sun, X., Shao, K., & Wang, T. (2016). Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Analytical and Bioanalytical Chemistry, 408(11), 2759–2780. https://doi.org/10.1007/s00216-015-9200-6

Taunk, K., Taware, R., More, T. H., Porto-Figueira, P., Pereira, J. A. M., Mohapatra, R., ... & others. (2018). A non-invasive approach to explore the discriminatory potential of the urinary volatilome of invasive ductal carcinoma of the breast. RSC Advances, 8(44), 25040–25050. https://doi.org/10.1039/C8RA03745C

Wang, C., Sun, B., Guo, L., Wang, X., Ke, C., Liu, S., ... & others. (2014). Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma. Scientific Reports, 4, 5383. https://doi.org/10.1038/srep05383

Yang, Y., Long, H., Feng, Y., Tian, S., Chen, H., & Zhou, P. (2024). A multi-omics method for breast cancer diagnosis based on metabolites in exhaled breath, ultrasound imaging, and basic clinical information. Heliyon, 10(11), e32115. https://doi.org/10.1016/j.heliyon.2024.e32115

Zhang, J., He, X., Guo, X., Wang, J., Gong, X., Jiao, D., ... & others. (2024). Identification potential biomarkers for diagnosis, and progress of breast cancer by using high-pressure photon ionization time-of-flight mass spectrometry. Analytica Chimica Acta, 1320, 342883. https://doi.org/10.1016/j.aca.2024.342883

Kure, S., Satoi, S., Kitayama, T., Nagase, Y., Nakano, N., Yamada, M., ... & others. (2021). A prediction model using 2-propanol and 2-butanone in urine distinguishes breast cancer. Scientific Reports, 11(1), 19801. https://doi.org/10.1038/s41598-021-99322-2

Downloads

Published

2025-08-05

How to Cite

PROFILE OF EXHALED VOLATILE ORGANIC COMPOUNDS ASSOCIATED WITH BREAST CANCER. (2025). International Seven Journal of Multidisciplinary, 4(4), e7717. https://doi.org/10.56238/isevmjv4n4-021