AVANÇOS E MÉTODOS NA IDENTIFICAÇÃO INDIVIDUAL DE VACAS LEITEIRAS: UMA REVISÃO DE LITERATURA
DOI:
https://doi.org/10.56238/rcsv15n12-002Palavras-chave:
Visão Computacional, Pecuária de Precisão, Rastreabilidade, Tecnologias de MonitoramentoResumo
A identificação individual é uma ferramenta essencial para a zootecnia de precisão, permitindo a automação em tempo real do monitoramento da saúde, produtividade e rastreabilidade dos rebanhos. Essa prática otimiza processos produtivos, aumenta a eficiência e promove a sustentabilidade da produção. Nesse contexto, esta revisão bibliográfica teve como objetivo analisar os avanços e métodos utilizados na identificação individual de vacas leiteiras, com ênfase na pecuária leiteira de precisão. Foram revisados estudos que abordam tecnologias de aprendizado profundo e aprendizado de máquina, destacando sua contribuição para a melhoria da precisão da identificação, mesmo em condições de campo desafiadoras. Técnicas de visão computacional têm aprimorado a eficiência do processo, embora enfrentem desafios relacionados à variabilidade das condições ambientais e à implementação em larga escala. O uso de drones e imagens multiangulares amplia as possibilidades de monitoramento, evidenciando o potencial dessas tecnologias para atender às demandas de escalabilidade e precisão. No Brasil, onde a produção leiteira é majoritariamente composta por pequenos e médios produtores, a adoção de tecnologias acessíveis torna-se fundamental para elevar a eficiência e a competitividade do setor. Os avanços tecnológicos também favorecem a rastreabilidade e a saúde animal, contribuindo para práticas mais sustentáveis. Conclui-se que a integração dessas ferramentas na realidade da pecuária nacional exige soluções adaptadas ao contexto socioeconômico dos produtores, sendo necessário o desenvolvimento de pesquisas que conciliem inovação tecnológica com viabilidade prática e econômica.
Downloads
Referências
ALLEN, A. et al. Evaluation of retinal imaging technology for the biometric identification of bovine animals in Northern Ireland. Livestock Science, v. 116, n. 1-3, p. 42-52, 2008.
ANDREW, W. et al. Automatic individual holstein friesian cattle identification via selective local coat pattern matching in RGB-D imagery. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016. p. 484-488.
ANDREW, W.; GREATWOOD, C.; BURGHARDT, T. Visual localization and individual identification of holstein friesian cattle via deep learning. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. 2017. p. 2850-2859.
ANDREW, W.; GREATWOOD, C.; BURGHARDT, T. Fusing Animal Biometrics with Autonomous Robotics: Drone-based Search and Individual ID of Friesian Cattle. In: 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW). IEEE, 2020. p. 38-43.
ANDREW, W. et al. Visual identification of individual Holstein-Friesian cattle via deep metric learning. Computers and Electronics in Agriculture, v. 185, p. 106133, 2021.
ARSLAN, A.; AKAR, M.; ALAGÖZ, F. 3D Cow identification in cattle farms. In: 2014 22nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2014. p. 1347-1350.
ASMAN, W.; JANSSEN, A. A long-range transport model for ammonia and ammonium for Europe. Atmospheric Environment (1967), v. 21, n. 10, p. 2099-2119, 1987.
AUGUSTO, B. S. Importância da raça holandesa na pecuária leiteira: revisão bibliográfica. 2023.
AWAD, A. I. From classical methods to animal biometrics: A review on cattle identification and tracking. Computers and Electronics in Agriculture, v. 123, p. 423-435, 2016.
BAHLO, C. et al. The role of interoperable data standards in precision livestock farming in extensive livestock systems: A review. Computers and Electronics in Agriculture, v. 156, p. 459-466, 2019.
BANHAZI, T. et al. Precision livestock farming: an international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering, v. 5, n. 3, p. 1-9, 2012.
BARANOV, A. S. et al. Breed differences and intra‐breed genetic variability of dermatoglyphic pattern of cattle. Journal of Animal Breeding and Genetics, v. 110, n. 1‐6, p. 385-392, 1993.
BARKEMA, H. et al. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. Journal of Dairy Science, v. 98, n. 11, p. 7426-7445, 2015.
BARRY, B. et al. Using muzzle pattern recognition as a biometric approach for cattle identification. Transactions of the ASABE, v. 50, n. 3, p. 1073-1080, 2007.
BELFIORE, N.; RUDAS, I. Applications of computational intelligence to mechanical engineering. In: 2014 IEEE 15th international symposium on computational intelligence and informatics (CINTI). IEEE, 2014. p. 351-368.
BERCKMANS, D. Precision livestock farming technologies for welfare management in intensive livestock systems. OIE Revue Scientifique et Technique, v. 33, n. 1, p. 189-196, 2014.
BERCKMANS, D. General introduction to precision livestock farming. Animal Frontiers, v. 7, n. 1, p. 6-11, 2017.
BEWLEY, J. Exploring the potential of precision dairy tools. 2017.
BHOLE, A. et al. CORF3D contour maps with application to Holstein cattle recognition from RGB and thermal images. Expert Systems with Applications, v. 192, p. 116354, 2022.
BIANCHI, M. C. et al. Diffusion of precision livestock farming technologies in dairy cattle farms. Animal, v. 16, n. 11, p. 100650, 2022.
BISHOP, J. et al. Livestock vocalisation classification in farm soundscapes. Computers and Electronics in Agriculture, v. 162, p. 531-542, 2019.
BOLFE, E. et al. Tecnologias digitais na pecuária: aplicações, desafios e expectativas. Campo Grande: Boletim Cicarne, 2021.
BRASIL. Instituto Brasileiro de Geografia e Estatística (IBGE). Produção de leite. Disponível em: https://www.ibge.gov.br/explica/producao-agropecuaria/leite/br. Acesso em: 09 jul. 2024.
BRASIL. Lei nº 12.097, de 24 de novembro de 2009. Dispõe sobre a rastreabilidade na cadeia produtiva de bovinos e búfalos. Brasília, DF: Diário Oficial da União, 2009.
BRASIL, MAPA. Ministério da Agricultura e Pecuária. MAPA DO LEITE. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/producao-animal/mapa-do-leite. Acesso em: 09 jul. 2024.
CARDOSO, C. et al. Imagining the ideal dairy farm. Journal of Dairy Science, v. 99, n. 2, p. 1663-1671, 2016.
CHARLTON, G.; RUTTER, S. The behaviour of housed dairy cattle with and without pasture access: A review. Applied Animal Behaviour Science, v. 192, p. 2-9, 2017.
CHEN, X. et al. Chinese mitten crab detection and gender classification method based on GMNet-YOLOv4. Computers and Electronics in Agriculture, v. 214, p. 108318, 2023.
CUTLER, A.; CUTLER, D.; STEVENS, J. Random Forests. Ensemble Machine Learning: Methods and Applications, p. 157-175, 2012.
EMBRAPA. Anuário Leite 2024: avaliação genética multirracial, 2024. Disponível em: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1164754/anuario-leite-2024-avaliacao-genetica-multirracial. Acesso em: 09/07/2024.
EMBRAPA, GADO DE LEITE. Centro de Inteligência do Leite–CILeite. Nota de Conjuntura: Mercado de Leite e Derivados, setembro de 2024.
ESPINOSA, H.; BASTIDAS D.; NARANJO A. Application of Geographic Information Systems (GIS) for the implementation of precision farming. Livestock Research for Rural Development, 2016.
ESTADOS UNIDOS. Department of Agriculture. Dairy and Products Annual - United States Department of Agriculture. Disponível em: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Dairy%20and%20Products%20Annual_Brasilia_Brazil_BR2023-0026.pdf. Acesso em: 09 jul. 2024.
FERREIRA, R. et al. Using dorsal surface for individual identification of dairy calves through 3D deep learning algorithms. Computers and Electronics in Agriculture, v. 201, p. 107272, 2022.
FOSGATE, G. T.; ADESIYUN, A. A.; HIRD, D. W. Ear-tag retention and identification methods for extensively managed water buffalo (Bubalus bubalis) in Trinidad. Preventive Veterinary Medicine, v. 73, n. 4, p. 287-296, 2006.
FOURNEL, S.; ROUSSEAU, A.; LABERGE, B. Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosystems Engineering, v. 155, p. 96-123, 2017.
FROST, A. R. et al. A review of livestock monitoring and the need for integrated systems. Computers and electronics in agriculture, v. 17, n. 2, p. 139-159, 1997.
GAZALBA, I. et al. Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. In: 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE, 2017. p. 294-298.
GHOLAMI, R.; FAKHARI, N. Support Vector Machine: principles, parameters, and applications. In: Handbook of Neural Computation. Academic Press, 2017. p. 515-535.
GIMENEZ, C. M.; SILVA, A. C. S.; ARCE, A. I. C.; MOREIRA, S. H. S.; TECH, A. R. B.; COSTA, E.J. X. Reconhecimento Biométrico de padrões do espelho nasal bovino utilizando K-nn como classificador. In: Zootec, Maceió. Anais Zootec, 2011. v. CD.
GJERGJI, M. et al. Deep learning techniques for beef cattle body weight prediction. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. p. 1-8.
GODEC, P. et al. Democratized image analytics by visual programming through integration of deep models and small-scale machine learning. Nature Communications, v. 10, n. 1, p. 4551, 2019.
GOU, J. et al. A generalized mean distance-based k-nearest neighbor classifier. Expert Systems with Applications, v. 115, p. 356-372, 2019.
HALACHMI, I.; GUARINO, M. Precision livestock farming: a ‘per animal’approach using advanced monitoring technologies. Animal, v. 10, n. 9, p. 1482-1483, 2016.
HU, H. et al. Cow identification based on fusion of deep parts features. Biosystems Engineering, v. 192, p. 245-256, 2020.
IANDOLA, F. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360, 2016.
KANG, Xi; ZHANG, X. D.; LIU, Gang. Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase. Journal of Dairy Science, v. 103, n. 11, p. 10628-10638, 2020.
KAO, C.; KUO, Y. A Neural Network model based on fuzzy classification concept. In: [Proceedings 1992] IJCNN International Joint Conference on Neural Networks. IEEE, 1992. p. 727-732.
KAUR, A.; KUMAR, M.; JINDAL, M. Cattle identification with muzzle pattern using computer vision technology: a critical review and prospective. Soft Computing, v. 26, n. 10, p. 4771-4795, 2022.
KENDRICK, K. M. Intelligent perception. Applied Animal Behaviour Science, v. 57, n. 3-4, p. 213-231, 1998.
KING, A. Technology: The future of agriculture. Nature, v. 544, n. 7651, p. S21-S23, 2017.
KUNZE, L., HAWES, N., DUCKETT, T., HANHEIDE, M., & KRAJNÍK, T. (2018). Artificial intelligence for long-term robot autonomy: A survey. IEEE Robotics and Automation Letters, 3(4), 4023-4030.
KÜHL, H.; BURGHARDT, T. Animal biometrics: quantifying and detecting phenotypic appearance. Trends in Ecology & Evolution, v. 28, n. 7, p. 432-441, 2013.
LINDBLOM, J. et al. Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision Agriculture, v. 18, p. 309-331, 2017.
LLAMAS, Jose et al. Classification of architectural heritage images using deep learning techniques. Applied Sciences, v. 7, n. 10, p. 992, 2017.
LOVARELLI, D. et al. Improvements to dairy farms for environmental sustainability in Grana Padano and Parmigiano Reggiano production systems. Italian Journal of Animal Science, 2019.
MAHMUD, M. et al. A systematic literature review on deep learning applications for precision cattle farming. Computers and Electronics in Agriculture, v. 187, p. 106313, 2021.
MEEN, G. H. et al. Sound analysis in dairy cattle vocalisation as a potential welfare monitor. Computers and Electronics in Agriculture, v. 118, p. 111-115, 2015.
MOREIRA, M.R et al. The Perception of Brazilian Livestock Regarding the Use of Precision Livestock Farming for Animal Welfare. Agriculture, v. 14, n. 8, p. 1315, 2024.
NAIMI, A. et al. Fault detection and isolation of a pressurized water reactor based on Neural Network and k-nearest neighbor. IEEE Access, v. 10, p. 17113-17121, 2022.
NEETHIRAJAN, S.; KEMP, B. Digital Livestock Farming. Sensing and Bio-Sensing Research, p. 100408, 2021.
NIKANDER, J. et al. Development of a general Cowshed information management system from proprietary subsystems. In: Proceedings of the 7th European Conference on Precision Livestock Farming. Milano, Italy. 2015.
NOLÊTO, R.M.A et al. Inovações no Reconhecimento e Detecção de Animais: Uma Análise da Literatura com Ênfase em Redes Neurais e Aprendizado de Máquina. Anais do XVI Encontro Unificado de Computação do Piauí, p. 33-40, 2023.
OCZAK, M. et al. Analysis of aggressive behaviours of pigs by automatic video recordings. Computers and electronics in agriculture, v. 99, p. 209-217, 2013.
OLIVEIRA, D. et al. A review of deep learning algorithms for computer vision systems in livestock. Livestock Science, v. 253, p. 104700, 2021.
PAN, S.; YANG, Q. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, v. 22, n. 10, p. 1345-1359, 2009.
PEREIRA, L. et al. Pecuária leiteira de precisão: conceitos e tecnologias disponíveis. Cadernos Técnicos de Veterinária e Zootecnia, nº 79, 2015.
PETERSEN, W. The identification of the bovine by means of nose-prints. Journal of Dairy Science, v. 5, n. 3, p. 249-258, 1922.
PSOTA, E. et al. Multi-pig part detection and association with a fully-convolutional network. Sensors, v. 19, n. 4, p. 852, 2019.
QIAO, Y. et al. Individual cattle identification using a deep learning based framework. IFAC-PapersOnLine, v. 52, n. 30, p. 318-323, 2019.
QIAO, Y. et al. Intelligent perception for cattle monitoring: A review for cattle identification, body condition score evaluation, and weight estimation. Computers and Electronics in Agriculture, v. 185, p. 106143, 2021.
REDMON, J. et al. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
ROSELL-POLO, J. et al. Advances in structured light sensors applications in precision agriculture and livestock farming. Advances in Agronomy, v. 133, p. 71-112, 2015.
RUIZ-GARCIA, L.; LUNADEI, L. The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, v. 79, n. 1, p. 42-50, 2011.
RUTTER, S. M. A 'smart' future for ruminant livestock production?. Cattle Practice, 2012.
SAJWAN, V.; RANJAN, R. Classifying flowers images by using different classifiers in Orange. International Journal of Engineering and Advanced Technology, v. 8, n. 6, p. 1057-1061, 2019.
SCHNAIDER, M.A et al. Vocalization and other behaviors indicating pain in beef calves during the ear tagging procedure. Journal of Veterinary Behavior, v. 47, p. 93-98, 2022.
SHANAHAN, C. et al. A framework for beef traceability from farm to slaughter using global standards: an Irish perspective. Computers and Electronics in Agriculture, v. 66, n. 1, p. 62-69, 2009.
SHEN, W. et al. Individual identification of dairy Cows based on convolutional Neural Networks. Multimedia Tools and Applications, v. 79, p. 14711-14724, 2020.
SHERWIN, C. M. Ear-tag chewing, ear rubbing and ear traumas in a small group of gilts after having electronic ear tags attached. Applied Animal Behaviour Science, v. 28, n. 3, p. 247-254, 1990.
SILVI, R. et al. Adoption of precision technologies by Brazilian dairy farms: The farmer’s perception. Animals, v. 11, n. 12, p. 3488, 2021.
SIMONYAN, K. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
SMITH, G. C. et al. Traceability from a US perspective. Meat Science, v. 71, n. 1, p. 174-193, 2005.
SONKA, S.; CHENG, Y. Big data: more than a lot of numbers!. farmdoc daily, v. 5, n. 201, 2015.
STEENEVELD, W.; VERNOOIJ, J. C. M.; HOGEVEEN, H. Effect of sensor systems for Cow management on milk production, somatic cell count, and reproduction. Journal Dairy Science, v.98, p.3896–3905, 2015.
SUN, Shengnan; YANG, Shicai; ZHAO, Lindu. Noncooperative bovine iris recognition via SIFT. Neurocomputing, v. 120, p. 310-317, 2013.
SZEGEDY, C. et al. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2017.
TASSINARI, P. et al. A computer vision approach based on deep learning for the detection of dairy Cows in free stall barn. Computers and Electronics in Agriculture, v. 182, p. 106030, 2021.
TULLO, E.; FINZI, A.; GUARINO, M. Review: Environmetal impact of livrestock farming and precision livestock farming as a mitigation strategy. Science of the Total Environment, v. 650, p. 2751–2760, 2019.
TURCO, S. et al. Ferramentas para o monitoramento de respostas comportamentais, fisiológicas e de desempenho animal a campo. Revista Científica de Produção Animal, v.21, n.1., p.69-75, 2019.
TZANIDAKIS, C. et al. An overview of the current trends in precision pig farming technologies. Livestock Science, v. 249, p. 104530, 2021.
UNGAR, E. D. et al. Inference of animal activity from GPS collar data on free-ranging cattle. Rangeland Ecology & Management, v. 58, n. 3, p. 256-266, 2005.
UNIÃO EUROPEIA Communication from the Commission to the European Parliament and the Council. Action Plan Against the Rising Threats from Antimicrobial Resistance. Comissão Europeia, 2011.
UWIZEYE, Aimable et al. A comprehensive framework to assess the sustainability of nutrient use in global livestock supply chains. Journal of Cleaner Production, v. 129, p. 647-658, 2016.
VAISHNAV, D.; RAO, B. Comparison of machine learning algorithms and fruit classification using Orange data mining tool. In: 2018 3rd International Conference on Inventive Computation Technologies (ICICT). IEEE, 2018. p. 603-607.
VRANKEN, E.; BERCKMANS, D. Precision livestock farming for pigs. Animal Frontiers, v. 7, n. 1, p. 32-37, 2017.
WANG, Y. et al. E3D: An efficient 3D CNN for the recognition of dairy Cow's basic motion behavior. Computers and Electronics in Agriculture, v. 205, p. 107607, 2023.
WILLIAMS, L. R. et al. Use of radio frequency identification (RFID) technology to record grazing beef cattle water point use. Computers and Electronics in Agriculture, v. 156, p. 193-202, 2019.
WILLIAMS, M.; JAMES, W.; ROSE, M. Variable segmentation and ensemble classifiers for predicting dairy Cow behaviour. Biosystems Engineering, v. 178, p. 156-167, 2019.
WU, Q. et al. The role of rural infrastructure in reducing production costs and promoting resource-conserving agriculture. International Journal of Environmental Research and Public Health, v. 16, n. 18, p. 3493, 2019.
WURTZ, K. et al. Recording behaviour of indoor-housed farm animals automatically using machine vision technology: A systematic review. PloS one, v. 14, n. 12, p. e0226669, 2019.
XIAO, J. et al. Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM. Computers and Electronics in Agriculture, v. 194, p. 106738, 2022.
XU, B. et al. Automated cattle counting using Mask R-CNN in quadcopter vision system. Computers and Electronics in Agriculture, v. 171, p. 105300, 2020.
XU, B. et al. CattleFaceNet: A cattle face identification approach based on RetinaFace and ArcFace loss. Computers and Electronics in Agriculture, v. 193, p. 106675, 2022.
XU, X. et al. Few-shot Cow identification via meta-learning. Information Processing in Agriculture, 2024.
YADAV, S.; SHUKLA, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In: 2016 IEEE 6th International Conference on Advanced Computing (IACC). IEEE, 2016. p. 78-83.
ZAWBAA, H. et al. Automatic fruit classification using Random Forest algorithm. In: 2014 14th International Conference on Hybrid Intelligent Systems. IEEE, 2014. p. 164-168.
ZHAO, K.; HE, D. Recognition of individual dairy cattle based on convolutional Neural Networks. Transactions of the Chinese Society of Agricultural Engineering, v. 31, n. 5, 2015.
ZHAO, J.; LIAN, Q. Compact loss for visual identification of cattle in the wild. Computers and Electronics in Agriculture, v. 195, p. 106784, 2022.
ZUCALI, M. et al. Management options to reduce the environmental impact of dairy goat milk production. Livestock Science, v. 231, p. 103888, 2020.
Downloads
Publicado
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.