INCLUSION OF β – MANNANASE IN CHICKEN DIETS

Authors

  • Thamírys Vianelli Maurício de Souza
  • Laura Alves Duarte
  • Lídia Caroline Ferreira Cruz
  • Fernanda Alves Duarte
  • Matheus Faria de Souza
  • José Henrique Stringhini
  • Heloísa Helena de Carvalho Mello

DOI:

https://doi.org/10.56238/isevmjv4n5-001

Keywords:

Additives, Poultry, Performance, Anti-nutritional Factors, Mannans

Abstract

In Brazil, commercial broiler feeds consist primarily of energy and protein, exemplified by cracked corn and soybean meal, respectively. Although considered excellent quality due to their high digestibility, these ingredients contain antinutritional factors that negatively impact animal performance, such as the presence of Non-Starch Polysaccharides (NSPs). Therefore, the industry, in its constant evolution, develops alternatives capable of improving the animals' utilization of these ingredients, such as supplementing diets with exogenous enzymes. β-mannanase is responsible for hydrolyzing β-mannans, components found in soybean hulls and meal, and thus helps reduce intestinal viscosity, favoring increased digestibility and utilization of dietary nutrients. Despite numerous results regarding the inclusion of β-mannanase on zootechnical performance parameters in broilers, such as feed conversion (FCR), weight gain (WG), and feed intake (FI), few studies have elucidated its effects on amino acid digestibility. Therefore, it is concluded that there is a need for further studies to clarify the impacts of β-mannanase on this specific aspect.

References

Alagawany, M., et al. (2023). Yeast in layer diets: Its effect on production, health, egg composition and economics. World’s Poultry Science Journal, 79(1), 135–153. https://doi.org/10.1080/00439339.2023.2167155

Arsenault, R. J., et al. (2017). Changes in immune and metabolic gut response in broilers fed β-mannanase in β-mannan-containing diets. Poultry Science, 96(12), 4307–4316. https://doi.org/10.3382/ps/pex246

Barbosa, N. A. A., et al. (2008). Enzimas exógenas no desempenho e na digestibilidade ileal de nutrientes em frangos de corte. Pesquisa Agropecuária Brasileira, 43(6), 755–762. https://doi.org/10.1590/S0100-204X2008000600011

Bavaresco, C., et al. (2021). Dietary hybrid phytase and carbohydrases on nutrient digestibility and bone quality of broiler chickens. Pesquisa Agropecuária Brasileira, 56, e01668. https://doi.org/10.1590/S1678-3921.pab2021.v56.01668

Bedford, M., & Partridge, G. (Eds.). (n.d.). Enzymes in farm animal nutrition (2nd ed.). [Publisher not specified].

Bedford, M. R., & Cowieson, A. J. (2020). Matrix values for exogenous enzymes and their application in the real world. Journal of Applied Poultry Research, 29(1), 15–22. https://doi.org/10.1016/j.japr.2019.10.005

Café, M. B., et al. (2000). Composição e digestibilidade dos aminoácidos das sojas integrais processadas para aves. Brazilian Journal of Poultry Science, 2(2). [No DOI available]

Caldas, J. V., et al. (2018). The effect of β-mannanase on nutrient utilization and blood parameters in chicks fed diets containing soybean meal and guar gum. Poultry Science, 97(8), 2807–2817. https://doi.org/10.3382/ps/pey115

Çalışlar, S. (2020). Effects of dietary guar meal with or without beta-mannanase on performance and egg quality traits in laying hens. Turkish Journal of Veterinary and Animal Sciences, 44(3), 511–520. https://doi.org/10.3906/vet-1912-85

Choct, M. (2004). Enzimas para a indústria de rações: Passado, presente e futuro. In XXII Congresso Mundial de Avicultura (pp. XX–XX). Istanbul, Turkey: Associação Mundial de Ciência Avícola.

Daskiran, M., et al. (2004). An evaluation of endo-beta-D-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in beta-mannan content. Poultry Science, 83(4), 662–668. https://doi.org/10.1093/ps/83.4.662

Dhawan, S., & Kaur, J. (2007). Microbial mannanases: An overview of production and applications. Critical Reviews in Biotechnology, 27(4), 197–216. https://doi.org/10.1080/07388550701775919

Filho, E. V. (2022). Níveis de energia, casca de soja e complexo enzimático na nutrição de frangos de corte [Master’s dissertation, Universidade Federal de Minas Gerais].

Franceschina, C. S. (2020). [Title not provided]. Programa de Pós-Graduação em Zootecnia, Universidade Federal do Rio Grande do Sul.

Hsiao, H.-Y., Anderson, D. M., & Dale, N. M. (2006). Levels of β-mannan in soybean meal. Poultry Science, 85(8), 1430–1432. https://doi.org/10.1093/ps/85.8.1430

Jahanian, R., & Rasouli, E. (2016). Effect of extrusion processing of soybean meal on ileal amino acid digestibility and growth performance of broiler chicks. Poultry Science, 95(12), 2871–2878. https://doi.org/10.3382/ps/pew178

Joseph, T. C., Remya, S., & Greeshma, S. S. (2023). Prebiotic and probiotic-based strategies for the control of antimicrobial resistance. In M. P. Mothadaka et al. (Eds.), Handbook on antimicrobial resistance: Current status, trends in detection and mitigation measures (pp. 1–46). Singapore: Springer Nature. https://doi.org/10.1007/978-981-19-9279-7_29-1

Kaczmarek, S. A., et al. (2014). The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poultry Science, 93(7), 1745–1753. https://doi.org/10.3382/ps.2013-03739

Kiarie, E. G., et al. (2021). Significance of single β-mannanase supplementation on performance and energy utilization in broiler chickens, laying hens, turkeys, sows, and nursery-finish pigs: A meta-analysis and systematic review. Translational Animal Science, 5(4), txab160. https://doi.org/10.1093/tas/txab160

Kim, M., et al. (2021). Synergistic effect of exogenous multi-enzyme and phytase on growth performance, nutrients digestibility, blood metabolites, intestinal microflora and morphology in broilers fed corn-wheat-soybean meal diets. Animal Bioscience, 34(8), 1365–1374. https://doi.org/10.5713/ab.20.0663

Latham, R. E., et al. (2018). Efficacy of β-mannanase on broiler growth performance and energy utilization in the presence of increasing dietary galactomannan. Poultry Science, 97(2), 549–556. https://doi.org/10.3382/ps/pex350

Leandro, N. S. M., et al. (2001). Efeito da granulometria do milho e do farelo de soja sobre o desempenho de codornas japonesas. Revista Brasileira de Zootecnia, 30(4), 1266–1271. https://doi.org/10.1590/S1516-35982001000500015

Marçal, B. M. (2024). Efeito da β-mananase sobre o desempenho, digestibilidade e saúde intestinal em frangos de corte [Master’s dissertation, Universidade Estadual Paulista Júlio de Mesquita Filho].

Mateos, G. G., et al. (2012). Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. Journal of Applied Poultry Research, 21(1), 156–174. https://doi.org/10.3382/japr.2011-00414

Minafra, C., et al. (2016). Carboidrases em rações de frangos de corte. Pubvet, 10(11). [No DOI available]

Mohammadigheisar, M., et al. (2021). Effect of dietary supplementation of β-mannanase on growth performance, carcass characteristics, excreta microflora, blood constituents, and nutrient ileal digestibility in broiler chickens. Animal Bioscience, 34(8), 1342–1349. https://doi.org/10.5713/ab.20.0356

Morgan, N., Bhuiyan, M. M., & Hopcroft, R. (2022). Non-starch polysaccharide degradation in the gastrointestinal tract of broiler chickens fed commercial-type diets supplemented with either a single dose of xylanase, a double dose of xylanase, or a cocktail of non-starch polysaccharide-degrading enzymes. Poultry Science, 101(6), 101846. https://doi.org/10.1016/j.psj.2022.101846

Nusairat, B., Odetallah, N., & Wang, J.-J. (2022). Live performance and microbial load modulation of broilers fed a direct-fed microbials (DFM) and xylanase combination. Veterinary Sciences, 9(3), 142. https://doi.org/10.3390/vetsci9030142

Pessôa, G. B. S., et al. (2012). Novos conceitos em nutrição de aves. Revista Brasileira de Saúde e Produção Animal, 13(3), 755–774. https://doi.org/10.1590/S1519-99402012000300014

Rao, S. V. R., et al. (2015). Effect of dietary inclusion of toasted guar (Cyamopsis tetragonoloba) meal as a source of protein on performance of White Leghorn layers. British Poultry Science, 56(6), 733–739. https://doi.org/10.1080/00071668.2015.1101058

Ravindran, V. (2013). Feed enzymes: The science, practice, and metabolic realities. Journal of Applied Poultry Research, 22(3), 628–636. https://doi.org/10.3382/japr.2013-00739

Rios, H. (2014). Frações de polissacarídeos não amídicos presentes em ingredientes utilizados na formulação de ração para frangos de corte [Doctoral dissertation, Universidade Federal do Rio Grande do Sul].

Romero, L. F., et al. (2013). Comparative effects of dietary carbohydrases without or with protease on the ileal digestibility of energy and amino acids and AMEn in young broilers. Animal Feed Science and Technology, 181(1–4), 35–44. https://doi.org/10.1016/j.anifeedsci.2013.02.001

Rostagno, H., et al. (2017). Tabelas brasileiras para aves e suínos (4th ed.). [Publisher: Horacio Rostagno].

Rostagno, H. S., Pupa, J. M. R., & Pack, M. (1995). Diet formulation for broilers based on total versus digestible amino acids. Journal of Applied Poultry Research, 4(3), 293–299. https://doi.org/10.1093/japr/4.3.293

Santos, E. T. D., et al. (2023). Levedura de cana-de-açúcar (Saccharomyces cerevisiae) e enzima β-mananase em dietas para frangos de corte. Semina: Ciências Agrárias, 44(1), 359–374. https://doi.org/10.5433/1679-0359.2023v44n1p359

Scapini, L. B. (2015). Suplementação de β-mananase em dietas para frangos de corte criados em condições experimentais e comerciais [Thesis, [Institution not specified]].

Shang, M. J., & Azcona, J. O. (n.d.). Energia metabolizable verdadera y digestibilidad de aminoacidos en poroto de soja, sorgos y distintos maices. Buenos Aires, Argentina: INTA.

Silva, V., Valentim, J., & Araujo, W. (2022). Características de carcaças e vísceras de frangos de corte alimentados com dietas com enzima beta mananase e soja integral desativada. [Journal name not fully specified], 32, 49–59.

Sinha, A. K., et al. (2011). Non-starch polysaccharides and their role in fish nutrition – A review. Food Chemistry, 127(4), 1409–1426. https://doi.org/10.1016/j.foodchem.2011.02.042

Song, J., et al. (2018). Characterization of an inhibitor-resistant endo-1,4-β-mannanase from the gut microflora metagenome of Hermetia illucens. Biotechnology Letters, 40(9–10), 1377–1387. https://doi.org/10.1007/s10529-018-2590-8

Sorbara, J. (2008). Carboidrases em programas enzimáticos de rações para frangos de corte [Doctoral dissertation, Universidade Estadual de Maringá].

Sousa, L. S. D., et al. (2019). Fiber source and xylanase on performance, egg quality, and gastrointestinal tract of laying hens. Revista Brasileira de Zootecnia, 48, e20170286. https://doi.org/10.1590/rbz4820170286

Utimi, N. B. P. (2016). Nutrição de precisão para frangos de corte [Doctoral dissertation, Universidade de São Paulo].

Wickramasuriya, S., et al. (2019). Multi-carbohydrase addition into a corn-soybean meal diet containing wheat and wheat by-products to improve growth performance and nutrient digestibility of broiler chickens. Journal of Applied Poultry Research, 28(2), 399–409. https://doi.org/10.3382/japr/pfy063

Downloads

Published

2025-09-03

How to Cite

INCLUSION OF β – MANNANASE IN CHICKEN DIETS. (2025). International Seven Journal of Multidisciplinary, 4(5), e7961. https://doi.org/10.56238/isevmjv4n5-001