SPATIAL AND TEMPORAL ANALYSIS OF COVID-19 CASES IN PARAÍBA

Authors

  • Patrícia Silva Nascimento Barros

DOI:

https://doi.org/10.56238/isevmjv4n5-004

Keywords:

Spatial Analysis, Temporal Analysis, Covid-19

Abstract

This article focuses on performing a spatial and temporal analysis of COVID-19 cases in Paraíba. Spatial analysis of area data is used in geoprocessing when the occurrence of the phenomenon under study is measured based on aggregated data by area, such as the number of COVID-19 cases per city. A time series is a set of ordered observations (in time). Time can be spatial, deep, or other variables. R software was used for the analyses. The data were obtained from the Paraíba State Department of Health. The results of the spatial analysis showed that the number of cities with more than 1,000 COVID-19 cases increased in 2021, and a slight decrease in the number of COVID-19 cases in Paraíba in 2022. The cities of João Pessoa, Campina Grande, and Patos had the highest number of cases each year. In the temporal analysis, the data needed to be transformed to a Normal distribution to apply the Box-Jenkins technique. The most suitable model was the ARMA(2,1) model, which obtained the lowest values ​​for the selection criteria, the residuals also satisfied the conditions and the predicted values ​​were within the confidence interval.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Brasil, Ministério da Saúde. (2023). Coronavírus. https://www.gov.br/saude/pt-br/coronavirus

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431. https://doi.org/10.1080/01621459.1979.10482531

Ehlers, R. S. (2009). Análise de séries temporais. http://www.icmc.usp.br/ehlers/stemp/stemp.pdf

Latorre, M. R. D. O., & Cardoso, M. R. A. (2001). Análise de séries temporais em epidemiologia: Uma introdução sobre os aspectos metodológicos. Revista Brasileira de Epidemiologia, 4(3), 147–155.

Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303. https://www.jstor.org/stable/2335207

Moraes, R. M., & Souza, I. C. A. (2003). Utilização de sistemas de informação geográfica na análise espacial de dados de saúde pública na Paraíba entre os anos de 1998 e 2001 [Relatório de PIBIC]. Universidade Federal da Paraíba.

Morettin, P. A., & Toloi, C. M. de C. (2006). Análise de séries temporais (2nd ed.). Blucher.

Paraíba, Secretaria de Saúde. (2023). Coronavírus. https://paraiba.pb.gov.br/diretas/saude/coronavirus

Siegel, S. (1975). Estatística não paramétrica para as ciências do comportamento. McGraw-Hill do Brasil.

Star, J., & Estes, J. (1990). Geographic information systems: An introduction. Prentice-Hall.

Downloads

Published

2025-09-05

How to Cite

SPATIAL AND TEMPORAL ANALYSIS OF COVID-19 CASES IN PARAÍBA. (2025). International Seven Journal of Multidisciplinary, 4(5), e7990 . https://doi.org/10.56238/isevmjv4n5-004